Break junctions are important in generating nanosensors and single molecular devices. The mechanically con- trollable break junction is the most widely used method for a break junction due to its simplicity and stabil...Break junctions are important in generating nanosensors and single molecular devices. The mechanically con- trollable break junction is the most widely used method for a break junction due to its simplicity and stability. However, the bandwidths of traditional devices are limited to about a few hertz. Moreover, when using traditional methods it is hard to allow independent control of more than one junction. Here we propose on-chip thermally controllable break junctions to overcome these challenges. This is verified by using finite element analysis. Adopting microelectromechanical systems produces features of high bandwidth and independent controllability to this new break junction system. The proposed method will have a wide range of applications on on-chip high speed independent controllable and highly integrated single molecule devices.展开更多
短路分断是断路器的核心功能,提高断路器的短路分断能力是市场的持续需求。针对有效提升塑壳断路器(Moulded Case Circuit Breaker,MCCB)短路分断能力的方法开展了研究。利用栅片电压测量分析法可以检测灭弧栅片在短路分断时切割电弧的...短路分断是断路器的核心功能,提高断路器的短路分断能力是市场的持续需求。针对有效提升塑壳断路器(Moulded Case Circuit Breaker,MCCB)短路分断能力的方法开展了研究。利用栅片电压测量分析法可以检测灭弧栅片在短路分断时切割电弧的情况,评估各灭弧栅片切割电弧的性能以及电弧在灭弧室内的动态特性,为电弧优化提供参考数据。利用有限元仿真的方法进行电磁力计算,有利于快速验证优化设计方案而免去实际的试验验证,节约产品的研发成本,缩短产品的研发周期。蒸汽喷射控制(Vapour Jet Control,VJC)产气材料的运用也能够进一步提高产品的短路分断能力。综合运用以上设计方法,能够在不会大幅增加研发成本的基础上,快速提升MCCB的短路分断能力,工程应用价值较好。展开更多
基金Supported by the National Key Basic Research Program of China under Grant No 2013CB921800the National Natural Science Foundation of China under Grant Nos 11227901,91021005,11274299,11104262 and 10834005the Strategic Priority Research Program(B)of the Chinese Academy of Sciences under Grant No XDB01030400
文摘Break junctions are important in generating nanosensors and single molecular devices. The mechanically con- trollable break junction is the most widely used method for a break junction due to its simplicity and stability. However, the bandwidths of traditional devices are limited to about a few hertz. Moreover, when using traditional methods it is hard to allow independent control of more than one junction. Here we propose on-chip thermally controllable break junctions to overcome these challenges. This is verified by using finite element analysis. Adopting microelectromechanical systems produces features of high bandwidth and independent controllability to this new break junction system. The proposed method will have a wide range of applications on on-chip high speed independent controllable and highly integrated single molecule devices.