Research conducted on ceramic materials has been investigating the incorporation of solid waste into their formulations,driven by the proper disposal of such waste and the reduction of negative environmental impacts.T...Research conducted on ceramic materials has been investigating the incorporation of solid waste into their formulations,driven by the proper disposal of such waste and the reduction of negative environmental impacts.This study analyzed the effects of adding aluminum powder residue to the physical properties of ceramic masses with the aim of obtaining new formulations for ceramic tiles.The aluminum residue and the standard mass for ceramic tile production were chemically characterized and homogenized to obtain new formulations with the incorporation of 4%,6%,8%,and 10%aluminum powder in the ceramic mass.The specimens were uniaxially pressed and sintered at a temperature of 1,200°C for 2 h,undergoing three different temperatures(100°C,400°C,and 650°C)for 30 min each.They were evaluated for WA(water absorption),RLq(linear shrinkage),SEM(scanning electron microscopy),and TRF(flexural strength)modulus.The results demonstrate that the addition of aluminum powder residue is feasible in the proposed formulations(4%,6%,8%,and 10%),as they enhance the mechanical properties of the ceramics compared to the formulation with 0%residue,at a sintering temperature of 1,200°C.展开更多
This paper presents an innovative approach to reusing waste tile granules(TG) and ceramic polishing powder(PP) to produce high performance ceramic tiles.We studied formulations each with a TG mass fraction of 25.0% an...This paper presents an innovative approach to reusing waste tile granules(TG) and ceramic polishing powder(PP) to produce high performance ceramic tiles.We studied formulations each with a TG mass fraction of 25.0% and a different PP mass fraction between 1.0% and 7.0%.The formulations included a small amount of borax additive of a mass fracton between 0.2% and 1.2%.The effects of these industrial by-products on compressive strength,water absorption and microstructure of the new ceramic tiles were investigated.The results indicate that the compressive strength decreases and water absorption increases when TG with a mass fraction of 25.0% are added.Improvement of the compressive strength may be achieved when TG(up to 25.0%) and PP(up to 2.0%) are both used at the same time.In particular,the compressive strength improvement can be maximized and water absorption reduced when a borax additive of up to 0.5% is used as a flux.Scanning electron microscopy reveals that a certain amount of fine PP granules and a high content of fluxing oxides from borax avail the formation of glassy phase that fills up the pores in the new ceramic tiles,resulting in a dense product with high compressive strength and low water absorption.展开更多
文摘Research conducted on ceramic materials has been investigating the incorporation of solid waste into their formulations,driven by the proper disposal of such waste and the reduction of negative environmental impacts.This study analyzed the effects of adding aluminum powder residue to the physical properties of ceramic masses with the aim of obtaining new formulations for ceramic tiles.The aluminum residue and the standard mass for ceramic tile production were chemically characterized and homogenized to obtain new formulations with the incorporation of 4%,6%,8%,and 10%aluminum powder in the ceramic mass.The specimens were uniaxially pressed and sintered at a temperature of 1,200°C for 2 h,undergoing three different temperatures(100°C,400°C,and 650°C)for 30 min each.They were evaluated for WA(water absorption),RLq(linear shrinkage),SEM(scanning electron microscopy),and TRF(flexural strength)modulus.The results demonstrate that the addition of aluminum powder residue is feasible in the proposed formulations(4%,6%,8%,and 10%),as they enhance the mechanical properties of the ceramics compared to the formulation with 0%residue,at a sintering temperature of 1,200°C.
基金Funded by a grant from the Key Technologies R & D Program of Guangzhou (No. 2004440003110013)
文摘This paper presents an innovative approach to reusing waste tile granules(TG) and ceramic polishing powder(PP) to produce high performance ceramic tiles.We studied formulations each with a TG mass fraction of 25.0% and a different PP mass fraction between 1.0% and 7.0%.The formulations included a small amount of borax additive of a mass fracton between 0.2% and 1.2%.The effects of these industrial by-products on compressive strength,water absorption and microstructure of the new ceramic tiles were investigated.The results indicate that the compressive strength decreases and water absorption increases when TG with a mass fraction of 25.0% are added.Improvement of the compressive strength may be achieved when TG(up to 25.0%) and PP(up to 2.0%) are both used at the same time.In particular,the compressive strength improvement can be maximized and water absorption reduced when a borax additive of up to 0.5% is used as a flux.Scanning electron microscopy reveals that a certain amount of fine PP granules and a high content of fluxing oxides from borax avail the formation of glassy phase that fills up the pores in the new ceramic tiles,resulting in a dense product with high compressive strength and low water absorption.