The electric energy injection from a pulsed power supply to a planar type of dielectric barrier discharge(DBD) reactor at atmospheric pressure was studied. Relations of the energy injection with barrier materials, b...The electric energy injection from a pulsed power supply to a planar type of dielectric barrier discharge(DBD) reactor at atmospheric pressure was studied. Relations of the energy injection with barrier materials, barrier thickness, peak voltage, gap distance, electrode area,and operation temperature were experimentally investigated. The energy injection is a function of relative permittivity, barrier thickness, peak voltage, gap distance, and electrode area. The influence of operation temperature on energy injection is slight in the range of 27-300℃ but becomes obvious in the range of 300-500℃. A model was established using which the energy injection can be easily predicted.展开更多
基金supported by National Natural Science Foundation of China(No.11575159)National Natural Science Foundation of China(No.51206146)+1 种基金Zhejiang Provincial Natural Science Foundation of China(No.LY13B070004)Program for Zhejiang Leading Team of S&T Innovation(No.2013TD07)
文摘The electric energy injection from a pulsed power supply to a planar type of dielectric barrier discharge(DBD) reactor at atmospheric pressure was studied. Relations of the energy injection with barrier materials, barrier thickness, peak voltage, gap distance, electrode area,and operation temperature were experimentally investigated. The energy injection is a function of relative permittivity, barrier thickness, peak voltage, gap distance, and electrode area. The influence of operation temperature on energy injection is slight in the range of 27-300℃ but becomes obvious in the range of 300-500℃. A model was established using which the energy injection can be easily predicted.