In this paper, a calculation model for the breakdown time delay and jitter of gas switches under hundred-nanosecond pulses is proposed and applied in a self-triggered pre-ionized switch. The effects of injection time ...In this paper, a calculation model for the breakdown time delay and jitter of gas switches under hundred-nanosecond pulses is proposed and applied in a self-triggered pre-ionized switch. The effects of injection time of pre-ionization, pulse rise time, and the pre-ionization jitter are discussed and verified through experiments. It indicates that the pre-ionization should be injected when the electric field is high enough in the gap, injection after 80% peak-time can ensure its effectiveness.Then the statistical time delay jitter will be determined by the pre-ionization jitter, which is an intrinsic restriction of the self-triggered switch. However, when the changing rate of the pulsed electric field exceeds a certain value, the breakdown time delay jitter can be partly offset in the formative stage because the formative time delay has an exponential relationship with the electric field. Therefore, lower time jitter can be obtained under pulses with a shorter pulse rise time. In general, the results of the calculation model agree with the experimental results, and the experimental parameters which lead to a low jitter can also be used as a reference.展开更多
文摘In this paper, a calculation model for the breakdown time delay and jitter of gas switches under hundred-nanosecond pulses is proposed and applied in a self-triggered pre-ionized switch. The effects of injection time of pre-ionization, pulse rise time, and the pre-ionization jitter are discussed and verified through experiments. It indicates that the pre-ionization should be injected when the electric field is high enough in the gap, injection after 80% peak-time can ensure its effectiveness.Then the statistical time delay jitter will be determined by the pre-ionization jitter, which is an intrinsic restriction of the self-triggered switch. However, when the changing rate of the pulsed electric field exceeds a certain value, the breakdown time delay jitter can be partly offset in the formative stage because the formative time delay has an exponential relationship with the electric field. Therefore, lower time jitter can be obtained under pulses with a shorter pulse rise time. In general, the results of the calculation model agree with the experimental results, and the experimental parameters which lead to a low jitter can also be used as a reference.