A novel silicon-on-insulator(SOI) high breakdown voltage(BV) power device with interlaced dielectric trenches(IDT) and N/P pillars is proposed. In the studied structure, the drift region is folded by IDT embedde...A novel silicon-on-insulator(SOI) high breakdown voltage(BV) power device with interlaced dielectric trenches(IDT) and N/P pillars is proposed. In the studied structure, the drift region is folded by IDT embedded in the active layer,which results in an increase of length of ionization integral remarkably. The crowding phenomenon of electric field in the corner of IDT is relieved by the N/P pillars. Both traits improve two key factors of BV, the ionization integral length and electric field magnitude, and thus BV is significantly enhanced. The electric field in the dielectric layer is enhanced and a major portion of bias is borne by the oxide layer due to the accumulation of inverse charges(holes) at the corner of IDT.The average value of the lateral electric field of the proposed device reaches 60 V/μm with a 10 μm drift length, which increases by 200% in comparison to the conventional SOI LDMOS, resulting in a breakdown voltage of 607 V.展开更多
A new SOI power device with multi-region high-concentration fixed charge(MHFC) is reported. The MHFC is formed through implanting Cs or I ion into the buried oxide layer(BOX), by which the high-concentration dynam...A new SOI power device with multi-region high-concentration fixed charge(MHFC) is reported. The MHFC is formed through implanting Cs or I ion into the buried oxide layer(BOX), by which the high-concentration dynamic electrons and holes are induced at the top and bottom interfaces of BOX. The inversion holes can enhance the vertical electric field and raise the breakdown voltage since the drain bias is mainly generated from the BOX. A model of breakdown voltage is developed, from which the optimal spacing has also been obtained. The numerical results indicate that the breakdown voltage of device proposed is increased by 287% in comparison to that of conventional LDMOS.展开更多
基金Project supported by the Guangxi Natural Science Foundation of China(Grant Nos.2013GXNSFAA019335 and 2015GXNSFAA139300)Guangxi Experiment Center of Information Science of China(Grant No.YB1406)+2 种基金Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing of China,Key Laboratory of Cognitive Radio and Information Processing(Grant No.GXKL061505)Guangxi Key Laboratory of Automobile Components and Vehicle Technology of China(Grant No.2014KFMS04)the National Natural Science Foundation of China(Grant Nos.61361011,61274077,and 61464003)
文摘A novel silicon-on-insulator(SOI) high breakdown voltage(BV) power device with interlaced dielectric trenches(IDT) and N/P pillars is proposed. In the studied structure, the drift region is folded by IDT embedded in the active layer,which results in an increase of length of ionization integral remarkably. The crowding phenomenon of electric field in the corner of IDT is relieved by the N/P pillars. Both traits improve two key factors of BV, the ionization integral length and electric field magnitude, and thus BV is significantly enhanced. The electric field in the dielectric layer is enhanced and a major portion of bias is borne by the oxide layer due to the accumulation of inverse charges(holes) at the corner of IDT.The average value of the lateral electric field of the proposed device reaches 60 V/μm with a 10 μm drift length, which increases by 200% in comparison to the conventional SOI LDMOS, resulting in a breakdown voltage of 607 V.
基金supported by the State Key Laboratory of Electronic Thin Films and Integrated Devices of China(Grant No.KFJJ201205)the Department of Education Project of Guangxi Province,China(Grant No.201202ZD041)+1 种基金the Postdoctoral Science Foundation Project of China(Grant Nos.2012M521127 and2013T60566)the National Natural Science Foundation of China(Grant Nos.61361011,61274077,and 61464003)
文摘A new SOI power device with multi-region high-concentration fixed charge(MHFC) is reported. The MHFC is formed through implanting Cs or I ion into the buried oxide layer(BOX), by which the high-concentration dynamic electrons and holes are induced at the top and bottom interfaces of BOX. The inversion holes can enhance the vertical electric field and raise the breakdown voltage since the drain bias is mainly generated from the BOX. A model of breakdown voltage is developed, from which the optimal spacing has also been obtained. The numerical results indicate that the breakdown voltage of device proposed is increased by 287% in comparison to that of conventional LDMOS.