This paper analyzes the phenomenon of rebound impact and its negative influence on the present hydraulic breaker. To get over its shortcomings, a new anti-rebound cushion device has been designed to prevent the phenom...This paper analyzes the phenomenon of rebound impact and its negative influence on the present hydraulic breaker. To get over its shortcomings, a new anti-rebound cushion device has been designed to prevent the phenomenon of rebound impact. A hydraulic cushion is used to absorb the rebound impact energy, which can be released for the next stroke of the hydraulic breaker. Thus, there is little loss of energy, and the efficiency of the impact system can be increased by 5 %. The absorption effect of the hydraulic anti-rebound cushion increases the service life of breaker components by up to twice as long as in the current breaker. A dynamic model and a motion equation of the anti-rebound cushion device are presented, and the optimum frequency and damping ratio are obtained, providing optimum design parameters for the anti-rebound cushion device.展开更多
文摘This paper analyzes the phenomenon of rebound impact and its negative influence on the present hydraulic breaker. To get over its shortcomings, a new anti-rebound cushion device has been designed to prevent the phenomenon of rebound impact. A hydraulic cushion is used to absorb the rebound impact energy, which can be released for the next stroke of the hydraulic breaker. Thus, there is little loss of energy, and the efficiency of the impact system can be increased by 5 %. The absorption effect of the hydraulic anti-rebound cushion increases the service life of breaker components by up to twice as long as in the current breaker. A dynamic model and a motion equation of the anti-rebound cushion device are presented, and the optimum frequency and damping ratio are obtained, providing optimum design parameters for the anti-rebound cushion device.