期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
A swirling jet from a nozzle with tangential inlets and its characteristics in breaking-up rocks 被引量:1
1
作者 Yang Yongyin Zou Deyong +2 位作者 Sun Weiliang Li Xinhui Niu Sicheng 《Petroleum Science》 SCIE CAS CSCD 2012年第1期53-58,共6页
In order to apply a swirling jet to a PDC drill bit, the nozzle performance influenced by nozzle inlet geometric parameters and rock breaking tests under submerged conditions were studied. Numerical simulation was use... In order to apply a swirling jet to a PDC drill bit, the nozzle performance influenced by nozzle inlet geometric parameters and rock breaking tests under submerged conditions were studied. Numerical simulation was used to study the influence of the nozzle structure on the swirling intensity and nozzle discharge coefficient. Simulation results indicate that spreading angle of the swirling jet is greater than that of" the non-swirling jet, and the swirling intensity of the jet is strongly influenced by the length of the nozzle body but weakly by the number of tangential inlets. Rock breaking tests were conducted to evaluate the performance of the swirling jet. It is found that the swirling jet shows a lower threshold pressure to break the rock samples and could break rock more efficiently compared with the non-swirling jet. 展开更多
关键词 NOZZLE JET swirling intensity discharge coefficient simulation rock breaking tests
下载PDF
Experimental research and energy analysis of a new type of dry ice powder pneumatic rock breaking technology 被引量:2
2
作者 Xiaofei Wang Shaobin Hu +2 位作者 Enyuan Wang Qiang Zhang Bing Liu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第4期423-435,共13页
When the traditional drill and blast method is applied to rock crushing projects,it has strong vibration,loud noise and dust pollution,so it cannot be used in densely populated areas such as urban public works.We deve... When the traditional drill and blast method is applied to rock crushing projects,it has strong vibration,loud noise and dust pollution,so it cannot be used in densely populated areas such as urban public works.We developed a supercritical CO_(2)true triaxial pneumatic rock-breaking experimental system,and conducted laboratory and field tests of dry ice powder pneumatic rock-breaking.The characteristics of the blast-induced vibration velocity waveform and the evolution of the vibration velocity and frequency with the focal distance were analyzed and discussed.The fracturing mechanism of dry ice powder pneumatic rock breaking is studied.The research results show that:(1)The vibration velocity induced by dry ice powder pneumatic rock breaking decays as a power function with the increase of the focal distance;(2)The vibration frequency caused by dry ice powder pneumatic rock breaking is mainly distributed in 1–120 Hz.Due to the dispersion effect,the dominant frequency of 10–30 Hz appears abnormally attenuated;(3)The traditional CO_(2)phase change fracturing energy calculation formula is also applicable to dry ice pneumatic rock breaking technology,and the trinitrotoluene(TNT)equivalent of fracturing energy is applicable to the Sadovsky formula;(4)Dry ice powder pneumatic rock breaking is shock wave and highenergy gas acting together to fracture rock,which can be divided into three stages,among which the gas wedge action of high-energy gas plays a dominant role in rock mass damage. 展开更多
关键词 Dry ice powder pneumatic rock breaking Cracking mechanism Energy analysis Vibration frequency
下载PDF
Rock breaking performance of the newly proposed unsubmerged cavitating abrasive waterjet
3
作者 Chenxing Fan Haitao Zhang +2 位作者 Yong Kang Hanqing Shi Deng Li 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第7期843-853,共11页
To improve the rock breaking ability, cavitating waterjet and abrasive waterjet are combined by using a coaxial low-speed waterjet generated around the periphery of a high-speed abrasive waterjet, and a new type of wa... To improve the rock breaking ability, cavitating waterjet and abrasive waterjet are combined by using a coaxial low-speed waterjet generated around the periphery of a high-speed abrasive waterjet, and a new type of waterjet called unsubmerged cavitating abrasive waterjet(UCAWJ) is thus produced. The rock breaking performance of UCAWJ was compared with submerged cavitating abrasive waterjet(SCAWJ)and unsubmerged abrasive waterjet(UAWJ) by impinging sandstone specimens. Moreover, the effects of jet pressure, standoff distance, abrasive flow rate and concentration were studied by evaluating the specific energy consumption, and the area, depth, and mass loss of the eroded specimen. The results show that the artificially generated submerged environment in UCAWJ is able to enhance the rock breaking performance under the same operating parameters. Furthermore, the rock breaking performance of UCAWJ is much better at higher jet pressures and smaller standoff distances when compared with UAWJ. The greatest rock breaking ability of UCAWJ appears at jet pressure of 50 MPa and standoff distance of 32 mm, with the mass loss of sandstone increased by 370.6% and the energy dissipation decreased by 75.8%. In addition, under the experimental conditions the optimal abrasive flow rate and concentration are 76.5 m L/min and 3%, respectively. 展开更多
关键词 Rock breaking Abrasive waterjet Unsubmerged cavitation EROSION Specific energy consumption
下载PDF
Comparative Study of the Rock-breaking Mechanism of a Disc Cutter and Wedge Tooth Cutter by Discrete Element Modelling
4
作者 Hua Jiang Huiyan Zhao +2 位作者 Xiaoyan Zhang Yusheng Jiang Yaofu Zheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第3期269-285,共17页
The operation of a shield tunnel boring machine(TBM)in a high-strength hard rock stratum results in significant cutter damage,adversely affecting the thrust and torque of the cutter head.Therefore,it is very important... The operation of a shield tunnel boring machine(TBM)in a high-strength hard rock stratum results in significant cutter damage,adversely affecting the thrust and torque of the cutter head.Therefore,it is very important to carry out the research on the stress characteristics and optimize the cutter parameters of cutters break high-strength hard rock.In this paper,the rock-breaking performance of cutters in an andesite stratum in the tunnel of Qingdao Metro Line No.8 was investigated using the discrete element method and theoretical analysis.The rock-breaking processes of a disc cutter and wedge tooth cutter were simulated by software particle flow code PFC^(3D),and the rock-breaking degree,stress of the cutter,and rock-breaking specific energy were analyzed.The rock damage caused by the cutter in a specific section was divided into three stages:the advanced influence,crushing,and stabilizing stages.The rock-breaking degree and the tangential and normal forces of the wedge tooth cutter are larger than that of the disc cutter under the same conditions.The disc cutter(wedge tooth cutter)has the highest rock-breaking efficiency at a cutter spacing of 100 mm(110 mm)and a penetration depth of 8 mm(10 mm),and the rock-breaking specific energy is 11.48 MJ/m^(3)(12.05 MJ/m^(3)).Therefore,two types of cutters with different penetration depths or cutter spacing should be considered.The number of teeth of wedge tooth cutters can be increased in hard strata to improve the rock-breaking efficiency of the shield.The research results provide a reference for shield cutterhead selection and cutter layout in similar projects. 展开更多
关键词 Qingdao andesite Rock breaking with cutter Wedge tooth cutter Specific energy PFC^(3D)
下载PDF
A review of rock macro-indentation:Theories,experiments,simulations,and applications
5
作者 Weiqiang Xie Xiaoli Liu +2 位作者 Xiaoping Zhang Xinmei Yang Xiaoxiong Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2351-2374,共24页
Rock macro-indentation plays a fundamental role in mechanical rock breaking for various rock engineering application,such as drilling,tunneling,cutting,and sawing.Over the past decades,extensive research has been cond... Rock macro-indentation plays a fundamental role in mechanical rock breaking for various rock engineering application,such as drilling,tunneling,cutting,and sawing.Over the past decades,extensive research has been conducted to understand the indentation mechanisms and responses through various approaches.This review aims to provide an overview of the current status and recent advancements in theories,experiments,numerical simulations,and applications of macro-indentation in rock engineering.It starts with elaborating on the mechanisms of macro-indentation,followed by a discussion of the merits and limitations of commonly used models.Influence factors and their effects on indentation test results are then summarized.Various numerical simulation methods for rock macro-indentation are highlighted,along with their advantages and disadvantages.Subsequently,the applications of indentation tests and indentation indices in characterizing rock properties are explored.It reveals that compression-tension,compression-shear,and composite models are widely employed in rock macroindentation.While the compression-tension model is straightforward to use,it may overlook the anisotropic properties of rocks.On the other hand,the composite model provides a more comprehensive description of rock indentation but requires complex calculations.Additionally,factors,such as indentation rate,indenter geometry,rock type,specimen size,and confining pressure,can significantly influence the indentation results.Simulation methods for macro-indentation encompass continuous medium,discontinuous medium,and continuous-discontinuous medium methods,with selection based on their differences in principle.Furthermore,rock macro-indentation can be practically applied to mining engineering,tunneling engineering,and petroleum drilling engineering.Indentation indices serve as valuable tools for characterizing rock strength,brittleness,and drillability.This review sheds light on the development of rock macro-indentation and its extensive application in engineering practice.Specialists in the field can gain a comprehensive understanding of the indentation process and its potential in various rock engineering endeavors. 展开更多
关键词 Rock macro-indentation Indentation test Indentation indices MECHANISM Rock breaking
下载PDF
The rock breaking and ROP increase mechanisms for single-tooth torsional impact cutting using DEM 被引量:7
6
作者 Xiao-Hua Zhu Yun-Xu Luo Wei-ji Liu 《Petroleum Science》 SCIE CAS CSCD 2019年第5期1134-1147,共14页
Torsional impact drilling is a new technology which has the advantages of high rock-breaking efficiency and a high rate of penetration(ROP).So far,there is no in-depth understanding of the rock-breaking mechanism for ... Torsional impact drilling is a new technology which has the advantages of high rock-breaking efficiency and a high rate of penetration(ROP).So far,there is no in-depth understanding of the rock-breaking mechanism for the ROP increase from torsional impact tools.Therefore,it has practical engineering significance to study the rock-breaking mechanism of torsional impact.In this paper,discrete element method(DEM)software(PFC2 D)is used to compare granite breaking under the steady and torsional impacting conditions.Meanwhile,the energy consumption to break rock,microscopic crushing process and chip characteristics as well as the relationship among these three factors for granite under different impacting frequencies and amplitudes are discussed.It is found that the average cutting force is smaller in the case of torsional impact cutting(TIC)than that in the case of steady loading.The mechanical specific energy(MSE)and the ratio of brittle energy consumption to total energy are negatively correlated;rock-breaking efficiency is related to the mode of action between the cutting tooth and rock.Furthermore,the ROP increase mechanism of torsional impact drilling technology is that the ratio of brittle energy consumption under the TIC condition is larger than that under a steady load;the degree of repeated fragmentation of rock chips under the TIC condition is lower than that under the steady load,and the TIC load promotes the formation of a transverse cracking network near the free surface and inhibits the formation of a deep longitudinal cracking network. 展开更多
关键词 Torsional impact rock breaking Mechanical specific energy Fractal dimension MICROCRACK DEM
下载PDF
Differentiation and analysis on rock breaking characteristics of TBM disc cutter at different rock temperatures 被引量:5
7
作者 谭青 张桂菊 +1 位作者 夏毅敏 李建芳 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第12期4807-4818,共12页
In order to study rock breaking characteristics of tunnel boring machine(TBM) disc cutter at different rock temperatures,thermodynamic rock breaking mathematical model of TBM disc cutter was established on the basis o... In order to study rock breaking characteristics of tunnel boring machine(TBM) disc cutter at different rock temperatures,thermodynamic rock breaking mathematical model of TBM disc cutter was established on the basis of rock temperature change by using particle flow code theory and the influence law of interaction mechanism between disc cutter and rock was also numerically simulated.Furthermore,by using the linear cutting experiment platform,rock breaking process of TBM disc cutter at different rock temperatures was well verified by the experiments.Finally,rock breaking characteristics of TBM disc cutter were differentiated and analyzed from microscale perspective.The results indicate the follows.1) When rock temperature increases,the mechanical properties of rock such as hardness,and strength,were greatly reduced,simultaneously the microcracks rapidly grow with the cracks number increasing,which leads to rock breaking load decreasing and improves rock breaking efficiency for TBM disc cutter.2) The higher the rock temperature,the lower the rock internal stress.The stress distribution rules coincide with the Buzin Neske stress circle rules: the maximum stress value is below the cutting edge region and then gradually decreases radiant around; stress distribution is symmetrical and the total stress of rock becomes smaller.3) The higher the rock temperature is,the more the numbers of micro,tensile and shear cracks produced are by rock as well as the easier the rock intrusion,along with shear failure mode mainly showing.4) With rock temperature increasing,the resistance intrusive coefficients of rock and intrusion power decrease obviously,so the specific energy consumption that TBM disc cutter achieves leaping broken also decreases subsequently.5) The acoustic emission frequency remarkably increases along with the temperature increasing,which improves the rock breaking efficiency. 展开更多
关键词 tunnel boring maching(TBM) disc cutter rock temperature rock breaking characteristic numerical simulation
下载PDF
Effect of the number of irradiation holes on rock breaking under constant laser energy 被引量:2
8
作者 Hai-Zeng Pan Yi Hu +4 位作者 Yong Kang Ze-Feng Wang Jia-Wei Liu Hao Chen Meng-Da Zhang 《Petroleum Science》 SCIE CAS CSCD 2022年第6期2969-2980,共12页
The use of mechanical drilling in accessing energy resources stored in deep and hard rock formations is becoming increasingly challenging.Thus,laser irradiation has emerged as a novel drilling method with considerable... The use of mechanical drilling in accessing energy resources stored in deep and hard rock formations is becoming increasingly challenging.Thus,laser irradiation has emerged as a novel drilling method with considerable in this context.This study examines the variation of rock fracture length,fracture tortuosity,hole size,and rock breaking efficiency for a different number of holes and laser power,based on the constant total energy of laser irradiation.As indicated by the results,increasing the laser power increases the laser intensity,which helps increase the hole diameter and depth.Moreover,for the same laser power,increasing the number of irradiated holes reduces the laser energy absorbed by each hole,which is not conducive to increasing the hole depth.As the number of holes increases,the mass loss of the rock also increases,while both specific energy(SE)and modified specific energy(MSE)decrease.When the number of holes remains the same,the mass of the shale removed by low power is less than that removed by high power,while SE and MSE have an inverse relation with power.Therefore,high laser power and multiple-hole irradiation are more conducive to rock breaking.Besides,the fracture length and fracture tortuosity of the rock irradiated by the low laser power will increase first and then decrease with the increase in the number of holes,and reach the peak value when the irradiation takes place through three holes.When a high-power laser irradiates the rock,the fracture length and tortuosity will increase with the increase in the number of irradiation holes.This is because a rock irradiated by low power dissipates more energy,with the result that the energy absorbed by the sample with four irradiation holes is not enough to break the rock quickly.This study is expected to provide some guidance to break rock for drilling deep reservoirs and hard rock formations using laser irradiation. 展开更多
关键词 Number of irradiation holes Rock breaking Fracture tortuosity Macrofracture
下载PDF
Rock Breaking Performance of a Pick Assisted by High-pressure Water Jet under Different Configuration Modes 被引量:3
9
作者 LIU Songyong LIU Xiaohui +1 位作者 CHEN Junfeng LIN Mingxing 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第3期607-617,共11页
In the process of rock breaking, the conical pick bears great cutting force and wear, as a result, high-pressure water jet technology is used to assist with cutting. However, the effect of the water jet position has n... In the process of rock breaking, the conical pick bears great cutting force and wear, as a result, high-pressure water jet technology is used to assist with cutting. However, the effect of the water jet position has not been studied for rock breaking using a pick. Therefore, the models of rock breaking with different configuration modes of the water jet are established based on SPH combined with FEM. The effect of the water jet pressure, distance between the jet and the pick bit, and cutting depth on the rock breaking performance as well as a comparison of the tension and compression stress are studied via simulation; the simulation results are verified by experiments. The numerical and experimental results indicate that the decrease in the rates of the pick force obviously increases from 25 MPa to 40 MPa, but slowly after 40 MPa, and the optimal distance between the jet and the pick bit is 2 mm under the JFP and JSP modes. The JCP mode is proved the best, followed by the modes of JRP and JFP, and the worst mode is JSP. The decrease in the rates of the pick force of the JCP, JRP, JFP, and JSP modes are up to 30.96%, 28.96%, 33.46%, 28.17%, and 25.42%, respectively, in experiment. Moreover, the JSP mode can be regarded as a special JFP model when the distance between the pick-tip and the jet impact point is 0 mm. This paper has a dominant capability in introducing new numerical and experimental method for the study of rock breaking assisted by water jet and electing the best water jet position from four different configuration modes. 展开更多
关键词 conical pick high pressure water jet rock breaking SPH
下载PDF
Numerical Study on Rock Breaking Mechanism of Supercritical CO_(2)Jet Based on Smoothed Particle Hydrodynamics
10
作者 Xiaofeng Yang Yanhong Li +2 位作者 Aiguo Nie Sheng Zhi Liyuan Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第3期1141-1157,共17页
Supercritical carbon dioxide(Sc-CO_(2))jet rock breaking is a nonlinear impact dynamics problem involving many factors.Considering the complexity of the physical properties of the Sc-CO_(2)jet and the mesh distortion ... Supercritical carbon dioxide(Sc-CO_(2))jet rock breaking is a nonlinear impact dynamics problem involving many factors.Considering the complexity of the physical properties of the Sc-CO_(2)jet and the mesh distortion problem in dealing with large deformation problems using the finite element method,the smoothed particle hydrodynamics(SPH)method is used to simulate and analyze the rock breaking process by Sc-CO_(2)jet based on the derivation of the jet velocity-density evolution mathematical model.The results indicate that there exists an optimal rock breaking temperature by Sc-CO_(2).The volume and length of the rock fracture increase with the rising of the jet temperature but falls when the jet temperature exceeds 340 K.With more complicated perforation shapes and larger fracture volumes,the Sc-CO_(2)jet can yield a rock breaking more effectively than water jet,The stress analysis shows that the Sc-CO_(2)rock fracturing process could be reasonably divided into three stages,namely the fracture accumulation stage,the rapid failure stage,and the breaking stabilization stage.The high diffusivity of Sc-CO_(2)is identified as the primary cause of the stress fluctuation and W-shaped fracture morphology.The simulated and calculated results are generally in conformity with the published experimental data.This study provides theoretical guidance for further study on Sc-CO_(2)fracturing mechanism and rock breaking efficiency. 展开更多
关键词 Supercritical carbon dioxide jet rock breaking SPH stress distribution erosion morphology.
下载PDF
Analysis of the Flow Field Characteristics Associated with the Dynamic Rock Breaking Process Induced by a Multi-Hole Combined External Rotary Bit
11
作者 Quanbin Ba Yanbao Liu +2 位作者 Zhigang Zhang Wei Xiong Kai Shen 《Fluid Dynamics & Materials Processing》 EI 2021年第4期697-710,共14页
The characteristics of the flow field associated with a multi-hole combined external rotary bit have been studied by means of numerical simulation in the framework of an RNG k-εturbulence model,and compared with the ... The characteristics of the flow field associated with a multi-hole combined external rotary bit have been studied by means of numerical simulation in the framework of an RNG k-εturbulence model,and compared with the results of dedicated rock breaking drilling experiments.The numerical results show that the nozzle velocity and dynamic pressure of the nozzle decrease with an increase in the jet distance,and the axial velocity of the nozzle decays regularly with an increase in the dimensionless jet distance.Moreover,the axial velocity related to the nozzle with inclination angle 20°and 30°can produce a higher hole depth,while the radial velocity of the nozzle with 60°inclination can enlarge the hole diameter.The outcomes of the CFD simulations are consistent with the actual dynamic rock breaking and pore forming process,which lends credence to the present results and indicates that they could be used as a reference for the future optimization of systems based on the multi-hole combined external rotary bit technology. 展开更多
关键词 External rotation nozzle RNG k-εturbulence model flow field characteristics rock breaking and hole forming process analysis
下载PDF
The comparative analysis of rocks' resistance to forward-slanting disc cutters and traditionally installed disc cutters
12
作者 Zhao-Huang Zhang Sun Fei Meng Liang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第4期690-695,共6页
At present, disc cutters of a full face rock tunnel boring machine are mostly mounted in the traditional way. Practical use in engineering projects reveals that this installation method not only heavily affects the op... At present, disc cutters of a full face rock tunnel boring machine are mostly mounted in the traditional way. Practical use in engineering projects reveals that this installation method not only heavily affects the operation life of disc cutters, but also increases the energy consumption of a full face rock tunnel boring machine. To straighten out this issue, therefore, a rock-breaking model is developed for disc cutters' movement after the research on the rock breaking of forward-slanting disc cutters. Equations of its displacement are established based on the analysis of velocity vector of a disc cutter's rock-breaking point. The functional relations then are brought forward between the displacement parameters of a rock-breaking point and its coordinate through the analysis of micro displacement of a rock-breaking point. Thus, the geometric equations of rock deformation are derived for the forward-slanting installation of disc cutters. With a linear relationship remaining between the acting force and its deformation either before or after the leap breaking, the constitutive relation of rock deformation can be expressed in the form of generalized Hooke law, hence the comparative analysis of the variation in the resistance of rock to the disc cutters mounted in the forward-slanting way with that in the traditional way. It is discovered that with the same penetration, strain of the rock in contact with forwardslanting disc cutters is apparently on the decline, in otherwords, the resistance of rock to disc cutters is reduced. Thus wear of disc cutters resulted from friction is lowered and energy consumption is correspondingly decreased. It will be useful for the development of installation and design theory of disc cutters, and significant for the breakthrough in the design of full face rock tunnel boring machine. 展开更多
关键词 installed breaking installation rock apparently tunnel traditionally decline remaining brought
下载PDF
Experimental investigation on the cuttings formation process and its relationship with cutting force in single PDC cutter tests
13
作者 Xian-Wei Dai Zhong-Wei Huang +3 位作者 Tao Huang Peng-Ju Chen Huai-Zhong Shi Shuang Yan 《Petroleum Science》 SCIE EI CAS CSCD 2023年第3期1779-1787,共9页
The single polycrystalline diamond compact(PDC)cutter test is widely used to investigate the mecha-nism of rock-breaking.The generated cuttings and cutting force are important indexes reflecting the rock failure proce... The single polycrystalline diamond compact(PDC)cutter test is widely used to investigate the mecha-nism of rock-breaking.The generated cuttings and cutting force are important indexes reflecting the rock failure process.However,they were treated as two separate parameters in previous publications.In this study,through a series of rock block cutting tests,the relationship between them was investigated to obtain an in-depth understanding of the formation of cuttings.In addition,to validate the standpoints obtained in the aforementioned experiments,rock sheet cutting tests were conducted and the rock failure process was monitored by a high-speed camera frame by frame.The cutting force was recorded with the same sampling rate as the camera.By this design,every sampled point of cutting force can match a picture captured by the camera,which reflects the interaction between the rock and the cutter.The results indicate that the increase in cutting depth results in a transition of rock failure modes.At shallow cutting depth,ductile failure dominates and all the cuttings are produced by the compression of the cutter.The corresponding cutting force fluctuates slightly.However,beyond the critical depth,brittle failure occurs and chunk-like cuttings appear,which leads to a sharp decrease in cutting force.After that,the generation of new surface results in a significant decrease in actual cutting depth,a parameter proposed to reflect the interaction between the rock and the cutter.Consequently,ductile failure dominates again and a slight fluctuation of cutting force can be detected.As the cutter moves to the rock,the actual cutting depth gradually increases,which results in the subsequent generation of chunk-like cuttings.It is accompanied by an obvious cutting force drop.That is,ductile failure and brittle failure,one following another,present at large cutting depth.The transition of rock failure mode can be correlated with the variation of cutting force.Based on the results of this paper,the real-time monitoring of torque may be helpful to determine the efficiency of PDc bits in the downhole. 展开更多
关键词 Rock breaking Cutting force PDC cutter CUTTINGS
下载PDF
Micro-macro fracture mechanism of heterogeneous granite in percussive drilling
14
作者 Wei-Ji Liu Yan-Fei Wang +1 位作者 Zhao-Wang Dan Xiao-Hua Zhu 《Petroleum Science》 SCIE EI CSCD 2023年第5期3131-3142,共12页
The conventional rotary rock breaking method faces a technical bottleneck in improving the rate of penetration(ROP)in deep hard formations.Percussive drilling is the most potential approach to increase rock-breaking e... The conventional rotary rock breaking method faces a technical bottleneck in improving the rate of penetration(ROP)in deep hard formations.Percussive drilling is the most potential approach to increase rock-breaking efficiency and ROP.However,the rock-breaking mechanism of percussive drilling is still unclear enough,especially the micro-fracture mechanism of rock under confining pressure(under lateral pressure and hydraulic pressure).In this paper,the impact rock breaking experiments by four kinds of Polycrystalline Diamond Compact(PDC)cutters are carried out using a drop-weight impact testing machine and an acoustic emission(AE)recording system,the influence of parameters such as cutter shape,rake angle,and impact energy on rock-breaking are systematically analyzed.This study includes a numerical simulation to examine the process of crack initiation,propagation,and cuttings formation during the impact process with the consideration of confining pressure.The results show the conicalshaped cutter is the most aggressive with high breaking efficiency.The penetration depth of the cutter is mainly influenced by the impact energy and cutter shape than the rake angle of the cutter.There exists critical impact energy makes the rock breaking efficiency the highest.The critical impact energy is about 40 J when using the conical-shaped cutter with a rake angle of 15°.The rock mainly failed in tensile mode,and the inter-grain crack is the main crack.Hydraulic pressure can inhibit the formation of horizontal cracks,while lateral pressure can inhibit the formation of vertical cracks and reduce the proportion of tensile cracks.The research results can provide some reference and basis for improving the rock-breaking efficiency in deep hard formations. 展开更多
关键词 Percussive drilling PFC Rock fragmentation characteristics Rock breaking efficiency
下载PDF
Tooth arrangement design of retractable DTH hammer bit used for drilling while casing
15
作者 ZHANG Boyao CHEN Baoyi +2 位作者 YANG Da BO Kun CAO Pinlu 《Global Geology》 2023年第1期40-46,共7页
Down-the-hole(DTH)hammer with casing while drilling(CWD)is a technology that has been proven to be able to alleviate many of the problems faced by complex formations.However,the drill bit is suffered from rapid wear,l... Down-the-hole(DTH)hammer with casing while drilling(CWD)is a technology that has been proven to be able to alleviate many of the problems faced by complex formations.However,the drill bit is suffered from rapid wear,low drilling efficiency,and high energy consumption due to the unreasonable tooth arrangement and impact energy selection in drilling process,which affect the application effect of this technology.ABAQUS software was used for numerical simulation of rock breaking behavior under impact load with the single,three,and five teeth arrangement drill bit respectively,to improve the application effect and solve the aforementioned technical problems.Based on the calculated parameters of tooth arrangement,we designed a novel drill bit for hard rocks and provided a theoretical basis for the tooth arrangement of largediameter drill bits. 展开更多
关键词 casing while drilling drill bit tooth arrangement rock breaking ABAQUS
下载PDF
EXPERIMENTAL STUDY OF ROCK BREAKING EFFECT OF STEEL PARTICLES 被引量:5
16
作者 CUI Meng ZHAI Ying-hu JI Guo-dong 《Journal of Hydrodynamics》 SCIE EI CSCD 2011年第2期241-246,共6页
Particle impact drilling is an efficient drilling technology for deep-well hard formation, With this technology, the rock is cut mainly by high-speed spherical particle impact under hydraulic action. In this article, ... Particle impact drilling is an efficient drilling technology for deep-well hard formation, With this technology, the rock is cut mainly by high-speed spherical particle impact under hydraulic action. In this article, the influence of jet flow factors, hydraulic factors and abrasive factors on rock breaking is studied through indoor experiments of impact by steel particles. The results indicate that the particle water jet has an optimal standoff distance and particle concentration; the rock breaking effect declines with the increase of the confining pressure and the decrease of the pump pressure and particle diameter. This study will provide some food of thought for the development of particle impact drilling technology. 展开更多
关键词 hard formation particle impact drilling water jet rock breaking effect experimental research
原文传递
DRILLING CHARACTERISTICS OF COMBINATIONS OF DIFFERENT HIGH PRESSURE JET NOZZLES 被引量:3
17
作者 ZHANG Yu-ying LIU Yong-wang XU Yi-ji REN Jian-hua 《Journal of Hydrodynamics》 SCIE EI CSCD 2011年第3期384-390,共7页
The high speed fluid jet for directly or indirectly breaking rock is one of the most effective ways to improve the deep penetration rate. In order to maximize the efficiency of energy use, the flow characteristics of ... The high speed fluid jet for directly or indirectly breaking rock is one of the most effective ways to improve the deep penetration rate. In order to maximize the efficiency of energy use, the flow characteristics of different combinations of high pressure jet nozzles are analyzed through numerical simulations. According to the velocity vectors at the bottom and the bottom hole pressure diagram, the effects of the high pressure nozzle combinations on the flow structure and the penetration rate are analyzed. It is shown that the combination of three vertical edge nozzles is very efficient, but inefficient in cleaning the bottom hole and eroding the wall. The jet velocity is 400 m/s and the radius is 5 mm, with a center nozzle added, the problem can be solved, but the high-pressure fluid displacement would increase. The center nozzle's jet velocity is 200 m/s and the radius is 8 ram, the combination of two vertical edge nozzles and a center tilt nozzle or that of a vertical edge nozzle and a center tilt nozzle would provide a flow structure favorable for drilling. The angle of inclination is 10°. To take advantage of high pressure jet energy to improve the efficiency of drilling, it is important to select a suitable nozzle combination according real conditions. 展开更多
关键词 Rate Of Penetration (ROP) rock breaking high pressure jet NOZZLE combination numerical simulation energy use
原文传递
Study on the fragmentation of granite due to the impact of single particle and double particles 被引量:5
18
作者 Yuchun Kuang Wei Lin +2 位作者 Xiaofeng Xu Yonghui Liu Kaisong Wu 《Petroleum》 2016年第3期267-272,共6页
Particle Impact Drilling(PID)is a novel method to improve the rate of penetration(ROP).In order to further improve the performance of PID,an investigation into the effect of single and double particles:(1)diameter;(2)... Particle Impact Drilling(PID)is a novel method to improve the rate of penetration(ROP).In order to further improve the performance of PID,an investigation into the effect of single and double particles:(1)diameter;(2)initial velocity;(3)distance;and(4)angle of incidence was undertaken to investigate their effects on broken volume and penetration depth into hard brittle rock.For this purpose,the laboratory experiment of single particle impact rock was employed.Meanwhile,based on the LS-DYNA,a new finite element(FE)simulation of the PID,including single and double particles impact rock,has been presented.The 3-dimensional(3D),aix-symmetric,dynamicexplicit,Lagrangian model has been considered in this simulation.And the Elastic and Holmquist Johnson Cook(HJC)material behaviors have been used for particles and rocks,respectively.The FE simulation results of single particle impacting rock are good agreement with experimental data.Furthermore,in this article the optimal impact parameters,including diameter,initial velocity,distance and the angle of incidence,are obtained in PID. 展开更多
关键词 Particle impact drilling DYNAMICS SHPB test Simulation Rock breaking mechanism
原文传递
THEORETICAL AND EXPERIMENTAL STUDY ON THE CONICAL SWIRLING WATER JET FLOW 被引量:1
19
作者 Wang Rui-heUniversity of Petroleum (Huadong), Shandong 257062, P.R.ChinaXu LiChina Classification Society (CCS), Beijing 100006, P, R. ChinaShen Zhong-houUniversity of Petroleum (Huadong) , Shandong 257062, P. R. China 《Journal of Hydrodynamics》 SCIE EI CSCD 1998年第3期80-90,共11页
This paper is concerned with theoretical and experimental study on the conical swirling water jet flow. Based upon the theoretical analysis, the experiment on the structural characteristics of swirling water jet flow ... This paper is concerned with theoretical and experimental study on the conical swirling water jet flow. Based upon the theoretical analysis, the experiment on the structural characteristics of swirling water jet flow including the velocity and pressure distribution laws, on which the parameters of the jet, nozzle and directional blades have more or less influence, was carried out in CSSRC by using a 3-D LDV in order to optimize a new high-efficiency jet instead of swirling drilling bit for rock-breaking and continuously drilling, and to meet the demand of radial horizontal drilling technology. Meanwhile based on the experimental results, the numerical simulation was conducted for the conical swirling water jet in the immersed well-bottom flow by solving the RANS equations in the 3-D body-fitted coordinate system with the k-e. turbulence model. The numerical results are consistent with the experimental data, and lead to some conclusions which are important for applying the conical swirling water jet to the petroleum drilling engineering. 展开更多
关键词 swirling water jet structural characteristics numerical simulation rock breaking
全文增补中
上一页 1 下一页 到第
使用帮助 返回顶部