Ferroelastic hybrid perovskite materials have been revealed the significance in the applications of switches,sensors,actuators,etc.However,it remains a challenge to design high-temperature ferroelastic to meet the req...Ferroelastic hybrid perovskite materials have been revealed the significance in the applications of switches,sensors,actuators,etc.However,it remains a challenge to design high-temperature ferroelastic to meet the requirements for the practical applications.Herein,we reported an one-dimensional organicinorganic hybrid perovskites(OIHP)(3-methylpyrazolium)CdCl_(3)(3-MBCC),which possesses a mmmF2/m ferroelastic phase transition at 263 K.Moreover,utilizing crystal engineering,we replace-CH_(3) with-NH_(2) and-H,which increases the intermolecular force between organic cations and inorganic frameworks.The phase transition temperature of(3-aminopyrazolium)CdCl_(3)(3-ABCC),and(pyrazolium)CdCl_(3)(BCC)increased by 73 K and 10 K,respectively.Particularly,BCC undergoes an unconventional inverse temperature symmetry breaking(ISTB)ferroelastic phase transition around 273 K.Differently,it transforms from a high symmetry low-temperature paraelastic phase(point group 2/m)to a low symmetry high-temperature ferroelastic phase(point group ī)originating from the rare mechanism of displacement of organic cations phase transition.It means that crystal BCC retains in ferroelastic phase above 273 K until melting point(446 K).Furthermore,characteristic ferroelastic domain patterns on crystal BCC are confirmed with polarized optical microscopy.Our study enriches the molecular mechanism of ferroelastics in the family of organic-inorganic hybrids and opens up a new avenue for exploring high-temperature ferroic materials.展开更多
Cold air outbreaks(CAOs)always hit East Asia during boreal winter and have significant impacts on human health and public transport.The amplitude and route of CAOs are closely associated with blocking circulations o...Cold air outbreaks(CAOs)always hit East Asia during boreal winter and have significant impacts on human health and public transport.The amplitude and route of CAOs are closely associated with blocking circulations over the Eurasian continent.Two categories of CAOs are recognized,namely,the ordinary cold wave events(CWEs)and the extensive and persistent extreme cold events(EPECEs),with the latter having even stronger impacts.The blocking features associated with these two types of CAOs and their differences are investigated in this study on the intraseasonal timescale.What these two CAOs do have in common is that they are both preceded by the intensification and recurrence of a blocking high over the midlatitude North Atlantic.The difference between these events is primarily reflected on the spatial scale and duration of the corresponding blocking high.During the CWEs,blocking occurs around the Ural Mountains,and exhibits a regional feature.The resulting cold air temperature persists for only up to 8 days.In contrast,during the EPECEs,the blocking region is quite extensive and is not only confined around the Ural Mountains but also extends eastward into Northeast Asia in a southwest–northeast orientation.As a result,the cold air tends to accumulate over a large area and persists for a much longer time.The blocking activity is primarily induced by an increased frequency and eastward extension of the synoptic anticyclonic Rossby wave breaking(AWB).Compared with the CWEs,characterized by a regional and short-lived synoptic AWB frequency,the EPE-CEs tend to be accompanied by more recurrent and eastward extensions of the synoptic AWB.展开更多
基金support from the National Natural Science Foundation of China(No.22175079)support from the National Natural Science Foundation of China(No.22205087)+2 种基金the Open Project Program of Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry,Jiangxi University of Science and Technology(No.20212BCD42018)National Natural Science Foundation of China(No.22275075)Natural Science Foundation of Jiangxi Province(Nos.20204BCJ22015 and 20202ACBL203001).
文摘Ferroelastic hybrid perovskite materials have been revealed the significance in the applications of switches,sensors,actuators,etc.However,it remains a challenge to design high-temperature ferroelastic to meet the requirements for the practical applications.Herein,we reported an one-dimensional organicinorganic hybrid perovskites(OIHP)(3-methylpyrazolium)CdCl_(3)(3-MBCC),which possesses a mmmF2/m ferroelastic phase transition at 263 K.Moreover,utilizing crystal engineering,we replace-CH_(3) with-NH_(2) and-H,which increases the intermolecular force between organic cations and inorganic frameworks.The phase transition temperature of(3-aminopyrazolium)CdCl_(3)(3-ABCC),and(pyrazolium)CdCl_(3)(BCC)increased by 73 K and 10 K,respectively.Particularly,BCC undergoes an unconventional inverse temperature symmetry breaking(ISTB)ferroelastic phase transition around 273 K.Differently,it transforms from a high symmetry low-temperature paraelastic phase(point group 2/m)to a low symmetry high-temperature ferroelastic phase(point group ī)originating from the rare mechanism of displacement of organic cations phase transition.It means that crystal BCC retains in ferroelastic phase above 273 K until melting point(446 K).Furthermore,characteristic ferroelastic domain patterns on crystal BCC are confirmed with polarized optical microscopy.Our study enriches the molecular mechanism of ferroelastics in the family of organic-inorganic hybrids and opens up a new avenue for exploring high-temperature ferroic materials.
基金Supported by the National Natural Science Foundation of China(41305047,41375064,and 41630424)National Science and Technology Support Program of China(2015BAC03B03)
文摘Cold air outbreaks(CAOs)always hit East Asia during boreal winter and have significant impacts on human health and public transport.The amplitude and route of CAOs are closely associated with blocking circulations over the Eurasian continent.Two categories of CAOs are recognized,namely,the ordinary cold wave events(CWEs)and the extensive and persistent extreme cold events(EPECEs),with the latter having even stronger impacts.The blocking features associated with these two types of CAOs and their differences are investigated in this study on the intraseasonal timescale.What these two CAOs do have in common is that they are both preceded by the intensification and recurrence of a blocking high over the midlatitude North Atlantic.The difference between these events is primarily reflected on the spatial scale and duration of the corresponding blocking high.During the CWEs,blocking occurs around the Ural Mountains,and exhibits a regional feature.The resulting cold air temperature persists for only up to 8 days.In contrast,during the EPECEs,the blocking region is quite extensive and is not only confined around the Ural Mountains but also extends eastward into Northeast Asia in a southwest–northeast orientation.As a result,the cold air tends to accumulate over a large area and persists for a much longer time.The blocking activity is primarily induced by an increased frequency and eastward extension of the synoptic anticyclonic Rossby wave breaking(AWB).Compared with the CWEs,characterized by a regional and short-lived synoptic AWB frequency,the EPE-CEs tend to be accompanied by more recurrent and eastward extensions of the synoptic AWB.