The impact of inputs on farm production growth was evaluated by analyzing the economic data of the upper and middle parts of the Yellow River basin, China for the period of 1980-1999. Descriptive statistics were emplo...The impact of inputs on farm production growth was evaluated by analyzing the economic data of the upper and middle parts of the Yellow River basin, China for the period of 1980-1999. Descriptive statistics were employed to characterize the temporal trends and spatial patterns in farm production and five pertinent inputs of cultivated cropland, irrigation ratio, agricultural labor, machinery power and chemical fertilizer. Stochastic frontier production function was applied to quantify the dependence of the farm production on these inputs. The growth of farm production was decomposed to reflect the contributions by input growths and change in total factor productivity.. The change in total factor productivity was further decomposed into the changes in technology and in technical efficiency. The gross value of farm production in the region of study increased by 1.6 fold during 1980-1999. Among the five selected farm inputs, machinery power and chemical fertilizer increased by 1.8 and 2.8 fold, respectively. The increases in cultivated cropland, irrigated cropland, and agricultural labor were all less than 0.16 fold. The growth in the farm production was primarily contributed by the increase in the total factor productivity during 1980-1985, and by input growths after 1985. More than 80% of the contributions by input growths were attributed to the increased application of fertilizer and machinery. In the change of total factor productivity, the technology change dominated over the technical efficiency change in the study period except in the period of 1985-1990, implying that institution and investment played important roles in farm production growth. There was a decreasing trend in the technical efficiency in the region of study, indicating a potential to increase farm production by improving the technical efficiency in farm activities. Given the limited natural resources in the basin, the results of this study suggested that, for a sustainable growth of farm production in the area, efforts should be directed to technology progress and improvement in technical efficiency in the use of available resources.展开更多
The kagome superconductor CsV_(3)Sb_(5) has attracted widespread attention due to its rich correlated electron states including superconductivity, charge density wave(CDW), nematicity, and pair density wave. Notably, ...The kagome superconductor CsV_(3)Sb_(5) has attracted widespread attention due to its rich correlated electron states including superconductivity, charge density wave(CDW), nematicity, and pair density wave. Notably, the modulation of the intertwined electronic orders by the chemical doping is significant to illuminate the cooperation/competition between multiple phases in kagome superconductors. In this study, we have synthesized a series of tantalum-substituted Cs(V_(1-x)Ta_(x))_(3)Sb_(5) by a modified self-flux method. Electrical transport measurements reveal that CDW is suppressed gradually and becomes undetectable as the doping content of x is over 0.07. Concurrently, the superconductivity is enhanced monotonically from T_(c) ~ 2.8 K at x = 0 to 5.2 K at x = 0.12. Intriguingly, in the absence of CDW, Cs(V_(1-x)Ta_(x))_(3)Sb_(5)(x = 0.12) crystals exhibit a pronounced two-fold symmetry of the in-plane angular-dependent magnetoresistance(AMR) in the superconducting state, indicating the anisotropic superconducting properties in the Cs(V_(1-x)Ta_(x))_(3)Sb_(5). Our findings demonstrate that Cs(V_(1-x)Ta_(x))_(3)Sb_(5) with the non-trivial band topology is an excellent platform to explore the superconductivity mechanism and intertwined electronic orders in quantum materials.展开更多
From humble beginnings to global influence,Prof.Dr.Mike K.S.Chan's story is a remarkable tale of passion,perseverance,and groundbreaking innovation in the biomedical field.As the co-owner and founder of the Europe...From humble beginnings to global influence,Prof.Dr.Mike K.S.Chan's story is a remarkable tale of passion,perseverance,and groundbreaking innovation in the biomedical field.As the co-owner and founder of the European Wellness Biomedical Group,he has dedicated his life to advancing biotechnology,stem cell research,and regenerative medicine,profoundly impacting lives across the globe.展开更多
Supercritical carbon dioxide(Sc-CO_(2))jet rock breaking is a nonlinear impact dynamics problem involving many factors.Considering the complexity of the physical properties of the Sc-CO_(2)jet and the mesh distortion ...Supercritical carbon dioxide(Sc-CO_(2))jet rock breaking is a nonlinear impact dynamics problem involving many factors.Considering the complexity of the physical properties of the Sc-CO_(2)jet and the mesh distortion problem in dealing with large deformation problems using the finite element method,the smoothed particle hydrodynamics(SPH)method is used to simulate and analyze the rock breaking process by Sc-CO_(2)jet based on the derivation of the jet velocity-density evolution mathematical model.The results indicate that there exists an optimal rock breaking temperature by Sc-CO_(2).The volume and length of the rock fracture increase with the rising of the jet temperature but falls when the jet temperature exceeds 340 K.With more complicated perforation shapes and larger fracture volumes,the Sc-CO_(2)jet can yield a rock breaking more effectively than water jet,The stress analysis shows that the Sc-CO_(2)rock fracturing process could be reasonably divided into three stages,namely the fracture accumulation stage,the rapid failure stage,and the breaking stabilization stage.The high diffusivity of Sc-CO_(2)is identified as the primary cause of the stress fluctuation and W-shaped fracture morphology.The simulated and calculated results are generally in conformity with the published experimental data.This study provides theoretical guidance for further study on Sc-CO_(2)fracturing mechanism and rock breaking efficiency.展开更多
Every electrical conductive medium placed in a time varying magnetic field is the seat of eddy currents that dissipate power through Joule effect. The induction hardening process takes advantage of this effect. The po...Every electrical conductive medium placed in a time varying magnetic field is the seat of eddy currents that dissipate power through Joule effect. The induction hardening process takes advantage of this effect. The power concentrates in the surface of the piece (skin effect), the thickness of which depends on the electromagnetic properties and the frequency of the currents. The numerical simulation of such a process is of major interest to control and estimate the thickness of the treated layer, the superficial hardness, the residual stresses (often compressive in the surface) or the residual distortions. In this paper we focus on the interactions between electromagnetism and heat transfer for the simulation of the heating stage. The method used to couple both phenomena is detailed. A magnetic vector potential formulation is used for the electromagnetic analysis and an approach coupling finite elements with boundary elements is presented. Such a method is especially useful when moving parts are involved as it is generally the case for induction hardening processes. The air is represented by a boundary element that enables to consider independent meshes for all the conductive media within the device (piece and coils). Moreover, meshes are now the same for the electromagnetic and thermal analyses. This considerably facilitates the analysis that is performed step by step, each step corresponding to a position of the moving media. At each step, the matrices associated with the boundary element are calculated and the magneto-dynamic and thermal analyses are performed. Finally, an application is presented.展开更多
A bounded confidence model of opinion dynamics in multi-group projects is presented in which each group's opinion evolution is driven by two types of forces:(i) the group's cohesive force which tends to restore t...A bounded confidence model of opinion dynamics in multi-group projects is presented in which each group's opinion evolution is driven by two types of forces:(i) the group's cohesive force which tends to restore the opinion back towards the initial status because of its company culture;and(ii) nonlinear coupling forces with other groups which attempt to bring opinions closer due to collaboration willingness.Bifurcation analysis for the case of a two-group project shows a cusp catastrophe phenomenon and three distinctive evolutionary regimes,i.e.,a deadlock regime,a convergence regime,and a bifurcation regime in opinion dynamics.The critical value of initial discord between the two groups is derived to discriminate which regime the opinion evolution belongs to.In the case of a three-group project with a symmetric social network,both bifurcation analysis and simulation results demonstrate that if each pair has a high initial discord,instead of symmetrically converging to consensus with the increase of coupling scale as expected by Gabbay's result(Physica A 378(2007) p.125 Fig.5),project organization(PO) may be split into two distinct clusters because of the symmetry breaking phenomenon caused by pitchfork bifurcations,which urges that apart from divergence in participants' interests,nonlinear interaction can also make conflict inevitable in the PO.The effects of two asymmetric level parameters are tested in order to explore the ways of inducing dominant opinion in the whole PO.It is found that the strong influence imposed by a leader group with firm faith on the flexible and open minded follower groups can promote the formation of a positive dominant opinion in the PO.展开更多
Unconventional superconductivity,in particular,in noncentrosymmetric systems,has been a long-sought topic in condensed matter physics.Recently,Re-based superconductors have attracted great attention owing to the poten...Unconventional superconductivity,in particular,in noncentrosymmetric systems,has been a long-sought topic in condensed matter physics.Recently,Re-based superconductors have attracted great attention owing to the potential time-reversal symmetry breaking in their superconducting states.We report the superconducting properties of noncentrosymmetric compounds Ta_(x)Re_(1-x) with 0.1 ≤x≤0.25,and find that the superconducting transition temperature reaches a maximum of ~8 K at the optimal level x=0.15.Nevertheless,muon-spin rotation and relaxation measurements reveal no time-reversal symmetry breaking existing in its superconducting state,which is in sharp contrast to both centrosymmetric Re metal and many other noncentrosymmetric Re-based superconductors.展开更多
This paper proposes an equation to calculate breaking wave induced wave set-up and set-down along reef flat. The mathematical equation was derived based on the theory of radiation stress and the conservation of wave e...This paper proposes an equation to calculate breaking wave induced wave set-up and set-down along reef flat. The mathematical equation was derived based on the theory of radiation stress and the conservation of wave energy. The equation is primarily determined by several physical variables including the breaking wave index, the stable wave index, the attenuation coefficient of wave energy flux, and the flow velocity in the re-stabilization zone. A series of laboratory experiments were carried out to calibrate the theoretical equations. Specifically, the breaking wave index,the stable wave index, and the velocity over the reef flat were measured in the laboratory. The attenuation coefficient of wave energy flux in our theoretical equation was determined by calibration by comparing with the laboratory measured wave height. Furthermore, it has been put forward that the velocity based on cnoidal wave theory could be used to determine the velocity over the reef flat if there is no velocity measurement available. Overall, the proposed equation can provide satisfactory prediction of wave set-up and set-down along the reef flat.展开更多
A bounded confidence model of opinion dynamics in multi-group projects is presented in which each group’s opinion evolution is driven by two types of forces:(i) the group’s cohesive force which tends to restore the ...A bounded confidence model of opinion dynamics in multi-group projects is presented in which each group’s opinion evolution is driven by two types of forces:(i) the group’s cohesive force which tends to restore the opinion back towards the initial status because of its company culture;and(ii) nonlinear coupling forces with other groups which attempt to bring opinions closer due to collaboration willingness.Bifurcation analysis for the case of a two-group project shows a cusp catastrophe phenomenon and three distinctive evolutionary regimes,i.e.,a deadlock regime,a convergence regime,and a bifurcation regime in opinion dynamics.The critical value of initial discord between the two groups is derived to discriminate which regime the opinion evolution belongs to.In the case of a three-group project with a symmetric social network,both bifurcation analysis and simulation results demonstrate that if each pair has a high initial discord,instead of symmetrically converging to consensus with the increase of coupling scale as expected by Gabbay’s result(Physica A 378(2007) p.125 Fig.5),project organization(PO) may be split into two distinct clusters because of the symmetry breaking phenomenon caused by pitchfork bifurcations,which urges that apart from divergence in participants’ interests,nonlinear interaction can also make conflict inevitable in the PO.The effects of two asymmetric level parameters are tested in order to explore the ways of inducing dominant opinion in the whole PO.It is found that the strong influence imposed by a leader group with firm faith on the flexible and open minded follower groups can promote the formation of a positive dominant opinion in the PO.展开更多
The dynamic response behaviors of upright breakwaters under broken wave impact are analysed based on the mass-damper-spring dynamic system model. The effects of the mass, damping, stiffness, natural period, and impuls...The dynamic response behaviors of upright breakwaters under broken wave impact are analysed based on the mass-damper-spring dynamic system model. The effects of the mass, damping, stiffness, natural period, and impulse duration (or oscillation period) on the translation, rotation, sliding force, overturning moment, and corresponding dynamic amplifying factors are studied. It is concluded that the ampli-ying factors only depend on the ratio of the system natural period to impulse duration (or oscillation period) under a certain damping ratio. Moreover, the equivalent static approach to breakwater design is also discussed.展开更多
Based on the effective medium approximation theory of composites, the whitecap-covered sea surface is treated as a medium layer of dense seawater droplets and air. Two electromagnetic scattering models of randomly rou...Based on the effective medium approximation theory of composites, the whitecap-covered sea surface is treated as a medium layer of dense seawater droplets and air. Two electromagnetic scattering models of randomly rough surface are applied to the investigation of microwave backscattering of breaking waves driven by strong wind. The shapes of seawater droplets are considered by calculating the effective dielectric constant of the whitecap layer. The responses of seawater droplets shapes, such as sphere and ellipsoid, to the backscattering coefficient are discussed. Numerical results of the models are in good agreement with the experimental measurements of horizontally and vertically polarized backscattering at microwave frequency 13.9GHz and different incidence angles.展开更多
A one-dimensional mixed-layer model, including a Mellor- Yamada level 2.5 turbulence closure scheme, was implemented to investi- gate the dynamical and thermal structures of the ocean surface mixed layer in the northe...A one-dimensional mixed-layer model, including a Mellor- Yamada level 2.5 turbulence closure scheme, was implemented to investi- gate the dynamical and thermal structures of the ocean surface mixed layer in the northern South China Sea. The turbulent kinetic ener- gy released through wave breaking was incorporated into the model as a source of energy at the ocean surface, and the influence of the breaking waves on the mixed layer was studied. The numerical simulations show that the simulated SST is overestimated in summer without the breaking waves. However, the cooler SST is simulated when the effect of the breaking waves is considered, the corre- sponding discrepancy with the observed data decreases up to 20% and the MLD calculated averagely deepens 3.8 m. Owing to the wave-enhanced turbulence mixing in the summertime, the stratification at the bottom of the mixed layer was modified and the tempera- ture gradient spread throughout the whole thermocline compared with the concentrated distribution without wave breaking.展开更多
In many fields of high-tech industry the ultra-t hi n wall parts are employed. In this paper the experiments were carried out to dis cuss the surface microstructure of the camera’s guided drawtube by applying ult ras...In many fields of high-tech industry the ultra-t hi n wall parts are employed. In this paper the experiments were carried out to dis cuss the surface microstructure of the camera’s guided drawtube by applying ult rasonic vibration cutting device to the traditional lathe. The influence rule of the cutting condition on the surface roughness was put forward, which was drawn by comparing the ultrasonic cutting with the common cutting by use of the cemen ted carbide tool and the polycrystalline diamond (PCD) tool. The test results sh owed that the ultrasonic cutting performs better than the common cutting in the same condition. According to the test results analyzing, the surface characteriz ation is influenced clearly by the rigidity of the acoustic system and the machi ne tool, as well the setting height of the tool tip. Otherwise, the dense regula r low frequency vibration ripples will be scraped on the machined surface. When the tool tip is set higher than the rotating center of the work piece by three t imes of the amplitude of ultrasonic vibration, the vibration ripples behave alig ht; they turn light and shade alternatively when the tool tip is lower than the rotating center of the work piece by three times of the amplitude of ultrasonic vibration. According to the test result analyzing, the following conclusions are put forward: 1) The surface roughness in ultrasonic cutting is better than that in common cutting. Under a one third critical cutting velocity, the value of th e surface roughness in ultrasonic cutting rise slightly along with the cutting v elocity, while in common cutting it decreases contrast to the cutting velocity; the curves of the surface roughness in ultrasonic cutting and common cutting see m to be alike, both increase along with the feed rate and the cutting depth, but the value in ultrasonic cutting is smaller in the same condition.2) The influen ce of the coolant on the surface roughness cannot be ignored. The kerosene can b e employed to improve the surface roughness in ultrasonic machining.3) In ultras onic cutting process of aluminum alloy ultra-thin wall work piece, the PCD tool performs better than the cemented carbide tools.4) The vibration ripples result from the not enough rigidity of the acoustic system and the improper setting he ight of the tool tip. The departure of the tool tip from the rotating center of the work piece to some extent causes the vibration ripples on the machined surfa ce.展开更多
Climatologically, August is the month with the most tropical cyclone(TC) formation over the western North Pacific(WNP) during the typhoon season. In this study, the reason for abnormal TC activity during August is dis...Climatologically, August is the month with the most tropical cyclone(TC) formation over the western North Pacific(WNP) during the typhoon season. In this study, the reason for abnormal TC activity during August is discussed—especially August 2014, when no TCs formed. The large-scale background of August 2014 is presented, with low-level large-scale easterly anomalies and anticyclonic anomalies dominating over the main TC genesis region, a weak monsoon trough system,and a strong WNP subtropical high(WPSH), leading to significantly reduced low-level convergence, upper-level divergence,and mid-level upward motion. These unfavorable large-scale conditions suppressed convection and cyclogenesis. In August2014, equatorial waves were inactive within the negative phase of the Madden–Julian Oscillation(MJO), with fewer tropical disturbances. Although the low-level vorticity and convection of those disturbances were partly promoted by the convective envelopes of equatorial waves, the integral evolution of disturbances, as well as the equatorial waves, were suppressed when propagating into the negative MJO phase. Moreover, the upper-level potential vorticity(PV) streamers associated with anticyclonic Rossby wave breaking events imported extratropical cold and dry air into the tropics. The peripheral tropospheric dryness and enhanced vertical wind shear by PV streamer intrusion combined with the negative MJO phase were responsible for the absence of TC formation over the WNP in August 2014.展开更多
Effect of Langmuir circulation (LC) on upper ocean mixing is investigated by a two-way wave-current coupled model. The model is coupled of the ocean circulation model ROMS (regional ocean modeling system) to the s...Effect of Langmuir circulation (LC) on upper ocean mixing is investigated by a two-way wave-current coupled model. The model is coupled of the ocean circulation model ROMS (regional ocean modeling system) to the surface wave model SWAN (simulating waves nearshore) via the model-coupling toolkit. The LC already certified its importance by many one-dimensional (1D) research and mechanism analysis work. This work focuses on inducing LC's effect in a three-dimensional (3-D) model and applying it to real field modeling. In ROMS, the Mellor-Yamada turbulence closure mixing scheme is modified by including LC's effect. The SWAN imports bathymetry, free surface and current information from the ROMS while exports signifi- cant wave parameters to the ROMS for Stokes wave computing every 6 s. This coupled model is applied to the South China Sea (SCS) during September 2008 cruise. The results show that LC increasing turbulence and deepening mixed layer depth (MLD) at order of O (10 m) in most of the areas, especially in the north part of SCS where most of our measurements operated. The coupled model further includes wave break- ing which will brings more energy into water. When LC works together with wave breaking, more energy is transferred into deep layer and accelerates the MLD deepening. In the north part of the SCS, their effects are more obvious. This is consistent with big wind event in the area of the Zhujiang River Delta. The shallow water depth as another reason makes them easy to influence the ocean mixing as well.展开更多
This study examined the ability of the white lupin to remove mercury (Hg) from a hydroponic system (Hg concentrations 0, 1.25, 2.5, 5 and 10 μmol/L) and from soil in pots and lysimeters (total Hg concentration ...This study examined the ability of the white lupin to remove mercury (Hg) from a hydroponic system (Hg concentrations 0, 1.25, 2.5, 5 and 10 μmol/L) and from soil in pots and lysimeters (total Hg concentration (19.2 ± 1.9) mg/kg availability 0.07%, and (28.9 ± 0.4) mg/kg availability 0.09%, respectively), and investigated the accumulation and distribution of Hg in different parts of the plant. White lupin roots efficiently took up Hg, but its translocation to the harvestable parts of the plant was low. The Hg concentration in the seeds posed no risk to human health according to the recommendations of the World Health Organization, but the shoots should not be used as fodder for livestock, at least when unmixed with other fodder crops. The accumulation of Hg in the hydroponically-grown plants was linear over the concentration range tested. The amount of Hg retained in the roots, relative to the shoots, was almost constant irrespective of Hg dose (90%). In the soil experiments, Hg accumulation increased with exposure time and was the greater in the lysimeter than in the pot experiments. Although Hg removal was the greater in the hydroponic system, revealing the potential of the white lupin to extract Hg, bioaccumulation was the greatest in the lysimeter-grown plants; the latter system more likely reflects the true behaviour of white lupin in the field when Hg availability is a factor that limits Hg removal. The present results suggest that the white lupin could be used in long-term soil reclamation strategies that include the goal of profitable land use in Hg-polluted areas.展开更多
Hybrid circuit breaker (HCB) technology based on a vacuum interrupter and a SF6 interrupter in series has become a new research direction because of the low-carbon requirements for high voltage switches. The vacuum ...Hybrid circuit breaker (HCB) technology based on a vacuum interrupter and a SF6 interrupter in series has become a new research direction because of the low-carbon requirements for high voltage switches. The vacuum interrupter has an excellent ability to deal with the steep rising part of the transient recovery voltage (TRV), while the SF6 interrupter can withstand the peak part of the voltage easily. An HCB can take advantage of the interrupters in the current interruption process. In this study, an HCB model based on the vacuum ion diffusion equations, ion density equation, and modified Cassie-Mayr arc equation is explored. A simulation platform is constructed by using a set of software called the alternative transient program (ATP). An HCB prototype is also designed, and the short circuit current is interrupted by the HCB under different action sequences of contacts. The voltage distribution of the HCB is analyzed through simulations and tests. The results demonstrate that if the vacuum interrupter withstands the initial TRV and interrupts the post-arc current first, then the recovery speed of the dielectric strength of the SF6 interrupter will be fast. The voltage distribution between two interrupters is determined by their post-arc resistance, which happens after current-zero, and subsequently, it is determined by the capacitive impedance after the post-arc current decays to zero.展开更多
A numerical wave tank is used to investigate the onset and strength of unforced wave breaking, and the waves have three types of initial spectra: constant amplitude spectrum, constant steepness spectrum and Pierson-M...A numerical wave tank is used to investigate the onset and strength of unforced wave breaking, and the waves have three types of initial spectra: constant amplitude spectrum, constant steepness spectrum and Pierson-Moscowitz spectrum. Numerical tests are performed to validate the model results. Then, the onset of wave breaking is discussed with geometric, kinematic, and dynamic breaking criteria. The strength of wave breaking, which is always characterized by the fractional energy loss and breaking strength coefficient, is studied for different spectra. The results show how the energy growth rate is better than the initial wave steepness on estimating the fractional energy losses as well as breaking strength coefficient.展开更多
基金support was partially provided by the University of Connecticut Research Foundation,Storrs Agricultural Experiment Station,Chinese Academy of Sciences Outstanding Overseas Chinese Scholars Award,and the National Natural Science Foundation of China(40671071).
文摘The impact of inputs on farm production growth was evaluated by analyzing the economic data of the upper and middle parts of the Yellow River basin, China for the period of 1980-1999. Descriptive statistics were employed to characterize the temporal trends and spatial patterns in farm production and five pertinent inputs of cultivated cropland, irrigation ratio, agricultural labor, machinery power and chemical fertilizer. Stochastic frontier production function was applied to quantify the dependence of the farm production on these inputs. The growth of farm production was decomposed to reflect the contributions by input growths and change in total factor productivity.. The change in total factor productivity was further decomposed into the changes in technology and in technical efficiency. The gross value of farm production in the region of study increased by 1.6 fold during 1980-1999. Among the five selected farm inputs, machinery power and chemical fertilizer increased by 1.8 and 2.8 fold, respectively. The increases in cultivated cropland, irrigated cropland, and agricultural labor were all less than 0.16 fold. The growth in the farm production was primarily contributed by the increase in the total factor productivity during 1980-1985, and by input growths after 1985. More than 80% of the contributions by input growths were attributed to the increased application of fertilizer and machinery. In the change of total factor productivity, the technology change dominated over the technical efficiency change in the study period except in the period of 1985-1990, implying that institution and investment played important roles in farm production growth. There was a decreasing trend in the technical efficiency in the region of study, indicating a potential to increase farm production by improving the technical efficiency in farm activities. Given the limited natural resources in the basin, the results of this study suggested that, for a sustainable growth of farm production in the area, efforts should be directed to technology progress and improvement in technical efficiency in the use of available resources.
基金Project supported by the National Key R&D Program of China(Grant No.2022YFA1204100)the National Natural Science Foundation of China(Grant No.62488201)+1 种基金the Chinese Academy of Sciences(Grant Nos.XDB33030000,ZDBS-SSW-WHC001,YSBR-003,and YSBR-053)Innovation Program of Quantum Science and Technology(Grant No.2021ZD0302700)。
文摘The kagome superconductor CsV_(3)Sb_(5) has attracted widespread attention due to its rich correlated electron states including superconductivity, charge density wave(CDW), nematicity, and pair density wave. Notably, the modulation of the intertwined electronic orders by the chemical doping is significant to illuminate the cooperation/competition between multiple phases in kagome superconductors. In this study, we have synthesized a series of tantalum-substituted Cs(V_(1-x)Ta_(x))_(3)Sb_(5) by a modified self-flux method. Electrical transport measurements reveal that CDW is suppressed gradually and becomes undetectable as the doping content of x is over 0.07. Concurrently, the superconductivity is enhanced monotonically from T_(c) ~ 2.8 K at x = 0 to 5.2 K at x = 0.12. Intriguingly, in the absence of CDW, Cs(V_(1-x)Ta_(x))_(3)Sb_(5)(x = 0.12) crystals exhibit a pronounced two-fold symmetry of the in-plane angular-dependent magnetoresistance(AMR) in the superconducting state, indicating the anisotropic superconducting properties in the Cs(V_(1-x)Ta_(x))_(3)Sb_(5). Our findings demonstrate that Cs(V_(1-x)Ta_(x))_(3)Sb_(5) with the non-trivial band topology is an excellent platform to explore the superconductivity mechanism and intertwined electronic orders in quantum materials.
文摘From humble beginnings to global influence,Prof.Dr.Mike K.S.Chan's story is a remarkable tale of passion,perseverance,and groundbreaking innovation in the biomedical field.As the co-owner and founder of the European Wellness Biomedical Group,he has dedicated his life to advancing biotechnology,stem cell research,and regenerative medicine,profoundly impacting lives across the globe.
基金National Natural Science Foundation of China,Nos.51674267,51874310.
文摘Supercritical carbon dioxide(Sc-CO_(2))jet rock breaking is a nonlinear impact dynamics problem involving many factors.Considering the complexity of the physical properties of the Sc-CO_(2)jet and the mesh distortion problem in dealing with large deformation problems using the finite element method,the smoothed particle hydrodynamics(SPH)method is used to simulate and analyze the rock breaking process by Sc-CO_(2)jet based on the derivation of the jet velocity-density evolution mathematical model.The results indicate that there exists an optimal rock breaking temperature by Sc-CO_(2).The volume and length of the rock fracture increase with the rising of the jet temperature but falls when the jet temperature exceeds 340 K.With more complicated perforation shapes and larger fracture volumes,the Sc-CO_(2)jet can yield a rock breaking more effectively than water jet,The stress analysis shows that the Sc-CO_(2)rock fracturing process could be reasonably divided into three stages,namely the fracture accumulation stage,the rapid failure stage,and the breaking stabilization stage.The high diffusivity of Sc-CO_(2)is identified as the primary cause of the stress fluctuation and W-shaped fracture morphology.The simulated and calculated results are generally in conformity with the published experimental data.This study provides theoretical guidance for further study on Sc-CO_(2)fracturing mechanism and rock breaking efficiency.
文摘Every electrical conductive medium placed in a time varying magnetic field is the seat of eddy currents that dissipate power through Joule effect. The induction hardening process takes advantage of this effect. The power concentrates in the surface of the piece (skin effect), the thickness of which depends on the electromagnetic properties and the frequency of the currents. The numerical simulation of such a process is of major interest to control and estimate the thickness of the treated layer, the superficial hardness, the residual stresses (often compressive in the surface) or the residual distortions. In this paper we focus on the interactions between electromagnetism and heat transfer for the simulation of the heating stage. The method used to couple both phenomena is detailed. A magnetic vector potential formulation is used for the electromagnetic analysis and an approach coupling finite elements with boundary elements is presented. Such a method is especially useful when moving parts are involved as it is generally the case for induction hardening processes. The air is represented by a boundary element that enables to consider independent meshes for all the conductive media within the device (piece and coils). Moreover, meshes are now the same for the electromagnetic and thermal analyses. This considerably facilitates the analysis that is performed step by step, each step corresponding to a position of the moving media. At each step, the matrices associated with the boundary element are calculated and the magneto-dynamic and thermal analyses are performed. Finally, an application is presented.
基金Project supported by the National Natural Science Foundation of China (Grant No. 70831002) Humanity and Social Science Youth Foundation of Ministry of Education of China (Grant No. 12YJCZH017)
文摘A bounded confidence model of opinion dynamics in multi-group projects is presented in which each group's opinion evolution is driven by two types of forces:(i) the group's cohesive force which tends to restore the opinion back towards the initial status because of its company culture;and(ii) nonlinear coupling forces with other groups which attempt to bring opinions closer due to collaboration willingness.Bifurcation analysis for the case of a two-group project shows a cusp catastrophe phenomenon and three distinctive evolutionary regimes,i.e.,a deadlock regime,a convergence regime,and a bifurcation regime in opinion dynamics.The critical value of initial discord between the two groups is derived to discriminate which regime the opinion evolution belongs to.In the case of a three-group project with a symmetric social network,both bifurcation analysis and simulation results demonstrate that if each pair has a high initial discord,instead of symmetrically converging to consensus with the increase of coupling scale as expected by Gabbay's result(Physica A 378(2007) p.125 Fig.5),project organization(PO) may be split into two distinct clusters because of the symmetry breaking phenomenon caused by pitchfork bifurcations,which urges that apart from divergence in participants' interests,nonlinear interaction can also make conflict inevitable in the PO.The effects of two asymmetric level parameters are tested in order to explore the ways of inducing dominant opinion in the whole PO.It is found that the strong influence imposed by a leader group with firm faith on the flexible and open minded follower groups can promote the formation of a positive dominant opinion in the PO.
基金Supported by the National Key R&D Program of China(Grant No.2018YFA0704300)the National Natural Science Foundation of China(Grant Nos.U1732162,11974061,11704047,U1832147 and 11674054)the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant No.XDB25000000)。
文摘Unconventional superconductivity,in particular,in noncentrosymmetric systems,has been a long-sought topic in condensed matter physics.Recently,Re-based superconductors have attracted great attention owing to the potential time-reversal symmetry breaking in their superconducting states.We report the superconducting properties of noncentrosymmetric compounds Ta_(x)Re_(1-x) with 0.1 ≤x≤0.25,and find that the superconducting transition temperature reaches a maximum of ~8 K at the optimal level x=0.15.Nevertheless,muon-spin rotation and relaxation measurements reveal no time-reversal symmetry breaking existing in its superconducting state,which is in sharp contrast to both centrosymmetric Re metal and many other noncentrosymmetric Re-based superconductors.
基金jointly supported by the National Key R&D Program of China (Grant No. 2018YFC0407503)the National Natural Science Foundation of China (Grant No. 51779149)+2 种基金the Scientific Research Project of Yangtze-to-Huaihe Water Diversion Project (Grant No. YJJHYJJC-ZX-20191106220)the Nanjing Hydraulic Research Institute Special Fund for Basic Scientific Research of Central Public Research Institutes(Grant Nos. Y220002, Y219012 and Y220013)the Water Conservancy Science and Technology Project of Jiangsu Province (Grant No. 2019009)。
文摘This paper proposes an equation to calculate breaking wave induced wave set-up and set-down along reef flat. The mathematical equation was derived based on the theory of radiation stress and the conservation of wave energy. The equation is primarily determined by several physical variables including the breaking wave index, the stable wave index, the attenuation coefficient of wave energy flux, and the flow velocity in the re-stabilization zone. A series of laboratory experiments were carried out to calibrate the theoretical equations. Specifically, the breaking wave index,the stable wave index, and the velocity over the reef flat were measured in the laboratory. The attenuation coefficient of wave energy flux in our theoretical equation was determined by calibration by comparing with the laboratory measured wave height. Furthermore, it has been put forward that the velocity based on cnoidal wave theory could be used to determine the velocity over the reef flat if there is no velocity measurement available. Overall, the proposed equation can provide satisfactory prediction of wave set-up and set-down along the reef flat.
基金Project supported by the National Natural Science Foundation of China (Grant No. 70831002)Humanity and Social Science Youth Foundation of Ministry of Education of China (Grant No. 12YJCZH017)
文摘A bounded confidence model of opinion dynamics in multi-group projects is presented in which each group’s opinion evolution is driven by two types of forces:(i) the group’s cohesive force which tends to restore the opinion back towards the initial status because of its company culture;and(ii) nonlinear coupling forces with other groups which attempt to bring opinions closer due to collaboration willingness.Bifurcation analysis for the case of a two-group project shows a cusp catastrophe phenomenon and three distinctive evolutionary regimes,i.e.,a deadlock regime,a convergence regime,and a bifurcation regime in opinion dynamics.The critical value of initial discord between the two groups is derived to discriminate which regime the opinion evolution belongs to.In the case of a three-group project with a symmetric social network,both bifurcation analysis and simulation results demonstrate that if each pair has a high initial discord,instead of symmetrically converging to consensus with the increase of coupling scale as expected by Gabbay’s result(Physica A 378(2007) p.125 Fig.5),project organization(PO) may be split into two distinct clusters because of the symmetry breaking phenomenon caused by pitchfork bifurcations,which urges that apart from divergence in participants’ interests,nonlinear interaction can also make conflict inevitable in the PO.The effects of two asymmetric level parameters are tested in order to explore the ways of inducing dominant opinion in the whole PO.It is found that the strong influence imposed by a leader group with firm faith on the flexible and open minded follower groups can promote the formation of a positive dominant opinion in the PO.
文摘The dynamic response behaviors of upright breakwaters under broken wave impact are analysed based on the mass-damper-spring dynamic system model. The effects of the mass, damping, stiffness, natural period, and impulse duration (or oscillation period) on the translation, rotation, sliding force, overturning moment, and corresponding dynamic amplifying factors are studied. It is concluded that the ampli-ying factors only depend on the ratio of the system natural period to impulse duration (or oscillation period) under a certain damping ratio. Moreover, the equivalent static approach to breakwater design is also discussed.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 40476062 and 10374026).
文摘Based on the effective medium approximation theory of composites, the whitecap-covered sea surface is treated as a medium layer of dense seawater droplets and air. Two electromagnetic scattering models of randomly rough surface are applied to the investigation of microwave backscattering of breaking waves driven by strong wind. The shapes of seawater droplets are considered by calculating the effective dielectric constant of the whitecap layer. The responses of seawater droplets shapes, such as sphere and ellipsoid, to the backscattering coefficient are discussed. Numerical results of the models are in good agreement with the experimental measurements of horizontally and vertically polarized backscattering at microwave frequency 13.9GHz and different incidence angles.
基金supported by the cooperative project of the Chinese Academy of Sciencesthe China National Offshore Oil Corporation+1 种基金the National Natural Science Foundation of China under contract Nos 40376008 and 40476008Open Projects of the Key Laboratory of Physical Oceanography of Ministry of Education of China under contract No.200310.
文摘A one-dimensional mixed-layer model, including a Mellor- Yamada level 2.5 turbulence closure scheme, was implemented to investi- gate the dynamical and thermal structures of the ocean surface mixed layer in the northern South China Sea. The turbulent kinetic ener- gy released through wave breaking was incorporated into the model as a source of energy at the ocean surface, and the influence of the breaking waves on the mixed layer was studied. The numerical simulations show that the simulated SST is overestimated in summer without the breaking waves. However, the cooler SST is simulated when the effect of the breaking waves is considered, the corre- sponding discrepancy with the observed data decreases up to 20% and the MLD calculated averagely deepens 3.8 m. Owing to the wave-enhanced turbulence mixing in the summertime, the stratification at the bottom of the mixed layer was modified and the tempera- ture gradient spread throughout the whole thermocline compared with the concentrated distribution without wave breaking.
文摘In many fields of high-tech industry the ultra-t hi n wall parts are employed. In this paper the experiments were carried out to dis cuss the surface microstructure of the camera’s guided drawtube by applying ult rasonic vibration cutting device to the traditional lathe. The influence rule of the cutting condition on the surface roughness was put forward, which was drawn by comparing the ultrasonic cutting with the common cutting by use of the cemen ted carbide tool and the polycrystalline diamond (PCD) tool. The test results sh owed that the ultrasonic cutting performs better than the common cutting in the same condition. According to the test results analyzing, the surface characteriz ation is influenced clearly by the rigidity of the acoustic system and the machi ne tool, as well the setting height of the tool tip. Otherwise, the dense regula r low frequency vibration ripples will be scraped on the machined surface. When the tool tip is set higher than the rotating center of the work piece by three t imes of the amplitude of ultrasonic vibration, the vibration ripples behave alig ht; they turn light and shade alternatively when the tool tip is lower than the rotating center of the work piece by three times of the amplitude of ultrasonic vibration. According to the test result analyzing, the following conclusions are put forward: 1) The surface roughness in ultrasonic cutting is better than that in common cutting. Under a one third critical cutting velocity, the value of th e surface roughness in ultrasonic cutting rise slightly along with the cutting v elocity, while in common cutting it decreases contrast to the cutting velocity; the curves of the surface roughness in ultrasonic cutting and common cutting see m to be alike, both increase along with the feed rate and the cutting depth, but the value in ultrasonic cutting is smaller in the same condition.2) The influen ce of the coolant on the surface roughness cannot be ignored. The kerosene can b e employed to improve the surface roughness in ultrasonic machining.3) In ultras onic cutting process of aluminum alloy ultra-thin wall work piece, the PCD tool performs better than the cemented carbide tools.4) The vibration ripples result from the not enough rigidity of the acoustic system and the improper setting he ight of the tool tip. The departure of the tool tip from the rotating center of the work piece to some extent causes the vibration ripples on the machined surfa ce.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41475074, 41775063 and 41475046)
文摘Climatologically, August is the month with the most tropical cyclone(TC) formation over the western North Pacific(WNP) during the typhoon season. In this study, the reason for abnormal TC activity during August is discussed—especially August 2014, when no TCs formed. The large-scale background of August 2014 is presented, with low-level large-scale easterly anomalies and anticyclonic anomalies dominating over the main TC genesis region, a weak monsoon trough system,and a strong WNP subtropical high(WPSH), leading to significantly reduced low-level convergence, upper-level divergence,and mid-level upward motion. These unfavorable large-scale conditions suppressed convection and cyclogenesis. In August2014, equatorial waves were inactive within the negative phase of the Madden–Julian Oscillation(MJO), with fewer tropical disturbances. Although the low-level vorticity and convection of those disturbances were partly promoted by the convective envelopes of equatorial waves, the integral evolution of disturbances, as well as the equatorial waves, were suppressed when propagating into the negative MJO phase. Moreover, the upper-level potential vorticity(PV) streamers associated with anticyclonic Rossby wave breaking events imported extratropical cold and dry air into the tropics. The peripheral tropospheric dryness and enhanced vertical wind shear by PV streamer intrusion combined with the negative MJO phase were responsible for the absence of TC formation over the WNP in August 2014.
基金the National Basic Research Program of China under contract Nos 2011CB403501 and 2012CB417402the Open Research Foundation for the State Key Laboratory of Satellite Ocean Environment Dynamics,Second Institute of Oceanography,State Oceanic Administration under contract No. SOED1210the Fund for Creative Research Groups by NSFC under contract No. 41121064
文摘Effect of Langmuir circulation (LC) on upper ocean mixing is investigated by a two-way wave-current coupled model. The model is coupled of the ocean circulation model ROMS (regional ocean modeling system) to the surface wave model SWAN (simulating waves nearshore) via the model-coupling toolkit. The LC already certified its importance by many one-dimensional (1D) research and mechanism analysis work. This work focuses on inducing LC's effect in a three-dimensional (3-D) model and applying it to real field modeling. In ROMS, the Mellor-Yamada turbulence closure mixing scheme is modified by including LC's effect. The SWAN imports bathymetry, free surface and current information from the ROMS while exports signifi- cant wave parameters to the ROMS for Stokes wave computing every 6 s. This coupled model is applied to the South China Sea (SCS) during September 2008 cruise. The results show that LC increasing turbulence and deepening mixed layer depth (MLD) at order of O (10 m) in most of the areas, especially in the north part of SCS where most of our measurements operated. The coupled model further includes wave break- ing which will brings more energy into water. When LC works together with wave breaking, more energy is transferred into deep layer and accelerates the MLD deepening. In the north part of the SCS, their effects are more obvious. This is consistent with big wind event in the area of the Zhujiang River Delta. The shallow water depth as another reason makes them easy to influence the ocean mixing as well.
基金The Spanish Ministry of Education and Science, Project CTM2005-04809/TECNO, financially supported this research
文摘This study examined the ability of the white lupin to remove mercury (Hg) from a hydroponic system (Hg concentrations 0, 1.25, 2.5, 5 and 10 μmol/L) and from soil in pots and lysimeters (total Hg concentration (19.2 ± 1.9) mg/kg availability 0.07%, and (28.9 ± 0.4) mg/kg availability 0.09%, respectively), and investigated the accumulation and distribution of Hg in different parts of the plant. White lupin roots efficiently took up Hg, but its translocation to the harvestable parts of the plant was low. The Hg concentration in the seeds posed no risk to human health according to the recommendations of the World Health Organization, but the shoots should not be used as fodder for livestock, at least when unmixed with other fodder crops. The accumulation of Hg in the hydroponically-grown plants was linear over the concentration range tested. The amount of Hg retained in the roots, relative to the shoots, was almost constant irrespective of Hg dose (90%). In the soil experiments, Hg accumulation increased with exposure time and was the greater in the lysimeter than in the pot experiments. Although Hg removal was the greater in the hydroponic system, revealing the potential of the white lupin to extract Hg, bioaccumulation was the greatest in the lysimeter-grown plants; the latter system more likely reflects the true behaviour of white lupin in the field when Hg availability is a factor that limits Hg removal. The present results suggest that the white lupin could be used in long-term soil reclamation strategies that include the goal of profitable land use in Hg-polluted areas.
基金supported in part by National Natural Science Foundation of China(No.50977004)Key Projects in the National Science and Technology Pillar Program during the Eleventh Five-year Plan Period.Research of China(2009BAA19B03,2009BAA19B05)+1 种基金Fok Ying Tung Education Foundation(No.131057)New Century Excellent Talents in University of China(No.NCET-10-0282)
文摘Hybrid circuit breaker (HCB) technology based on a vacuum interrupter and a SF6 interrupter in series has become a new research direction because of the low-carbon requirements for high voltage switches. The vacuum interrupter has an excellent ability to deal with the steep rising part of the transient recovery voltage (TRV), while the SF6 interrupter can withstand the peak part of the voltage easily. An HCB can take advantage of the interrupters in the current interruption process. In this study, an HCB model based on the vacuum ion diffusion equations, ion density equation, and modified Cassie-Mayr arc equation is explored. A simulation platform is constructed by using a set of software called the alternative transient program (ATP). An HCB prototype is also designed, and the short circuit current is interrupted by the HCB under different action sequences of contacts. The voltage distribution of the HCB is analyzed through simulations and tests. The results demonstrate that if the vacuum interrupter withstands the initial TRV and interrupts the post-arc current first, then the recovery speed of the dielectric strength of the SF6 interrupter will be fast. The voltage distribution between two interrupters is determined by their post-arc resistance, which happens after current-zero, and subsequently, it is determined by the capacitive impedance after the post-arc current decays to zero.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.41106019 and 41176016)the Public Science and Technology Research Funds Projects of Ocean(Grant No.201105018)the Scientific Research Fund of the Second Institute of Oceanography,SOA(Grant No.JT1205)
文摘A numerical wave tank is used to investigate the onset and strength of unforced wave breaking, and the waves have three types of initial spectra: constant amplitude spectrum, constant steepness spectrum and Pierson-Moscowitz spectrum. Numerical tests are performed to validate the model results. Then, the onset of wave breaking is discussed with geometric, kinematic, and dynamic breaking criteria. The strength of wave breaking, which is always characterized by the fractional energy loss and breaking strength coefficient, is studied for different spectra. The results show how the energy growth rate is better than the initial wave steepness on estimating the fractional energy losses as well as breaking strength coefficient.