A submerged cavitation water jet(SCWJ)is an effective method to recycle solid propellant from obsolete solid engines by the breaking method.Solid propellant's breaking modes and mechanical process under SCWJ impac...A submerged cavitation water jet(SCWJ)is an effective method to recycle solid propellant from obsolete solid engines by the breaking method.Solid propellant's breaking modes and mechanical process under SCWJ impact are unclear.This study aims to understand those impact breaking mechanisms.The hydroxyl-terminated polybutadiene(HTPB)propellant was chosen as the research material,and a self-designed test system was used to conduct impact tests at four different working pressures.The high-speed camera characterized crack propagation,and the DIC method calculated strain change during the impact process.Besides,micro and macro fracture morphologies were characterized by scanning electron microscope(SEM)and computed tomography(CT)scanning.The results reveal that the compressive strain concentration region locates right below the nozzle,and the shear strain region distributes symmetrically with the jet axis,which increases to 4% at first 16th ms,the compressive strain rises to 2% and 6% in the axial and transverse direction,respectively.The two tensile cracks formed first at the compression strain concentrate region,and there generate many shear cracks around the tensile cracks,and those shear cracks that develop and aggregate cause the cracks to become wider and cut through the tensile cracks,forming the tensile-shear cracks and the impact parts eventually fail.The HTPB propellant forms a breaking hole shaped conical after impact 10 s.The mass loss increases by 17 times at maximum,with the working pressure increasing by three times.Meanwhile,the damage value of the breaking hole remaining on the surface increases by 7.8 times while 2.9 times in the depth of the breaking hole.The breaking efficiency is closely affected by working pressures.The failure modes of HTPB impacted by SCWJ are classified as tensile crack-dominated and tensile-shear crack-dominated damage mechanisms.展开更多
Topologically nontrivial Fe-based superconductors attract extensive attentions due to their ability of hosting Majorana zero modes(MZMs)which could be used for topological quantum computation.Topological defects such ...Topologically nontrivial Fe-based superconductors attract extensive attentions due to their ability of hosting Majorana zero modes(MZMs)which could be used for topological quantum computation.Topological defects such as vortex lines are required to generate MZMs.Here,we observe the robust edge states along the surface steps of CaKFe_(4)As_(4).Remarkably,the tunneling spectra show a sharp zero-bias peak(ZBP)with multiple integerquantized states at the step edge under zero magnetic field.We propose that the increasing hole doping around step edges may drive the local superconductivity into a state with possible spontaneous time-reversal symmetry breaking.Consequently,the ZBP can be interpreted as an MZM in an effective vortex in the superconducting topological surface state by proximity to the center of a tri-junction with different superconducting order parameters.Our results provide new insights into the interplay between topology and unconventional superconductivity,and pave a new path to generate MZMs without magnetic field.展开更多
China’s Olympic delegation at the Paris 2024,with 404 athletes competing in 232 events across 30 sports,clinched 40 gold,27 silver,and 24 bronze medals,marking their best performance at an Olympics held abroad.The su...China’s Olympic delegation at the Paris 2024,with 404 athletes competing in 232 events across 30 sports,clinched 40 gold,27 silver,and 24 bronze medals,marking their best performance at an Olympics held abroad.The success of these athletes across various disciplines demonstrates the country’s efforts to expand its athletic prowess while also marks a new chapter for Chinese sportsmanship on the international stage.展开更多
Smartex,a trailblazing leader in textile industry innovation,was proud to announce its return to ITM 2024,showcasing unparalleled advancements in quality control and production efficiency.Building on the success of pr...Smartex,a trailblazing leader in textile industry innovation,was proud to announce its return to ITM 2024,showcasing unparalleled advancements in quality control and production efficiency.Building on the success of previous exhibitions at ITM 2022 and ITMA Milan 2023,Smartex emerges stronger than ever,presenting its complete Smartex System tailored to transform textile manufacturing.展开更多
An idealized numerical wave flume has been established by finite element method on the bases of Navier Stokes equations through prescribing the appropriate boundary conditions for the open boundary,incident boundary,...An idealized numerical wave flume has been established by finite element method on the bases of Navier Stokes equations through prescribing the appropriate boundary conditions for the open boundary,incident boundary,free surface and solid boundary in this paper.The characteristics of waves propagating over a step have been investigated by this numerical model.The breaker wave height is determined depending on the kinetic criterion.The numerical model is verified by laboratory experiments,and the empirical formula for the damping of wave height due to breaking is also given by experiments.展开更多
[Objective] This study aimed to understand the characters of hard seeds of Amphicarpaea edgeworthii Benth. (Leguminosae) and explore the methods for break- ing dormancy. [Method] For both aerial and subterranean see...[Objective] This study aimed to understand the characters of hard seeds of Amphicarpaea edgeworthii Benth. (Leguminosae) and explore the methods for break- ing dormancy. [Method] For both aerial and subterranean seeds of A. edgeworthii, the morphological characteristics were observed and the appropriate temperature for germination was explored. For aerial seeds of A. edgeworthii, the characters of hard seeds were studied, and concentrated sulfuric acid treatment, hot water soak treat- ment and mechanical damage treatment were compared to explore the methods for breaking seed dormancy. [Result] The aerial seeds were oblate and averaged 3.38 mm in length, 3.02 mm in width, 1.88 mm in thickness, 15.32 g in thousand grain weight, with a hard seed rate after of up to 98% natural maturation. The subter- ranean seeds were approximately oblate with a maximum diameter of 15 mm and a hundred grain weight of (50.08-58.26 g); among all the treatments for breaking hardseededness, cutting seed coat treatment and concentrated sulfuric acid treatment for 20 minutes were the most effective methods, whereas hot water soak treatment was the least effective method; constant temperature between 20 and 30 ℃ was optimum for the germination of aerial seeds, and alternative temperature of 30/20 ℃ was most appropriate for the germination of subterranean seeds. [Conclusion] Cutting seed coat treatment and concentrated sulfuric acid treatment for 20 minutes were the most effective methods to break the hardseededness of A. edgeworthii.展开更多
A quasi three-dimensional numerical model of wave-driven coastal currents with the effects of surface rollers is developed for the study of the spatial lag between the location of the maximum wave-induced current and ...A quasi three-dimensional numerical model of wave-driven coastal currents with the effects of surface rollers is developed for the study of the spatial lag between the location of the maximum wave-induced current and the wave breaking point. The governing equations are derived from Navier-Stokes equations and solved by the hybrid method combining the fractional step finite different method in the horizontal plane with a Galerkin finite element method in the vertical direc- tion. The surface rollers effects are considered through incorporating the creation and evolution of the roller area into the free surface shear stress. An energy equation facilitates the computation process which transfers the wave breaking energy dissipation to the surface roller energy. The wave driver model is a phase-averaged wave model based on the wave action balance equation. Two sets of laboratory experiments producing breaking waves that generated longshore currents on a planar beach am used to evaluate the model's performance. The present wave-driven coastal current model with the roller effect in the surface shear stress term can produce satisfactory results by increasing the wave-induced nearshore current velocity inside the surf zone and shifting the location of the maximum longshore current velocity landward.展开更多
The dynamic response behaviors of upright breakwaters under broken wave impact are analysed based on the mass-damper-spring dynamic system model. The effects of the mass, damping, stiffness, natural period, and impuls...The dynamic response behaviors of upright breakwaters under broken wave impact are analysed based on the mass-damper-spring dynamic system model. The effects of the mass, damping, stiffness, natural period, and impulse duration (or oscillation period) on the translation, rotation, sliding force, overturning moment, and corresponding dynamic amplifying factors are studied. It is concluded that the ampli-ying factors only depend on the ratio of the system natural period to impulse duration (or oscillation period) under a certain damping ratio. Moreover, the equivalent static approach to breakwater design is also discussed.展开更多
Based on the effective medium approximation theory of composites, the whitecap-covered sea surface is treated as a medium layer of dense seawater droplets and air. Two electromagnetic scattering models of randomly rou...Based on the effective medium approximation theory of composites, the whitecap-covered sea surface is treated as a medium layer of dense seawater droplets and air. Two electromagnetic scattering models of randomly rough surface are applied to the investigation of microwave backscattering of breaking waves driven by strong wind. The shapes of seawater droplets are considered by calculating the effective dielectric constant of the whitecap layer. The responses of seawater droplets shapes, such as sphere and ellipsoid, to the backscattering coefficient are discussed. Numerical results of the models are in good agreement with the experimental measurements of horizontally and vertically polarized backscattering at microwave frequency 13.9GHz and different incidence angles.展开更多
An experimental scheme for the generation of directional focusing waves in a wave basin is established in this paper. The effects of the directional range, frequency width and center frequency on the wave focusing are...An experimental scheme for the generation of directional focusing waves in a wave basin is established in this paper. The effects of the directional range, frequency width and center frequency on the wave focusing are studied. The distribution of maximum amplitude and the evolution of time series and spectra during wave packet propagation and the variation of water surface parameters are extensively investigated. The results reveal that the characteristics of focusing waves are significantly influenced by wave directionality and that the breaking criteria for directional waves are distinctly different from those for unidirectional waves.展开更多
A one-dimensional mixed-layer model, including a Mellor- Yamada level 2.5 turbulence closure scheme, was implemented to investi- gate the dynamical and thermal structures of the ocean surface mixed layer in the northe...A one-dimensional mixed-layer model, including a Mellor- Yamada level 2.5 turbulence closure scheme, was implemented to investi- gate the dynamical and thermal structures of the ocean surface mixed layer in the northern South China Sea. The turbulent kinetic ener- gy released through wave breaking was incorporated into the model as a source of energy at the ocean surface, and the influence of the breaking waves on the mixed layer was studied. The numerical simulations show that the simulated SST is overestimated in summer without the breaking waves. However, the cooler SST is simulated when the effect of the breaking waves is considered, the corre- sponding discrepancy with the observed data decreases up to 20% and the MLD calculated averagely deepens 3.8 m. Owing to the wave-enhanced turbulence mixing in the summertime, the stratification at the bottom of the mixed layer was modified and the tempera- ture gradient spread throughout the whole thermocline compared with the concentrated distribution without wave breaking.展开更多
By means of an improved mapping method and a variable separation method, a series of variable separation solutions including solitary wave solutions, periodic wave solutions and rational function solutions) to the (...By means of an improved mapping method and a variable separation method, a series of variable separation solutions including solitary wave solutions, periodic wave solutions and rational function solutions) to the (2+1)-dimensional breaking soliton system is derived. Based on the derived solitary wave excitation, we obtain some special annihilation solitons and chaotic solitons in this short note.展开更多
Torsional impact drilling is a new technology which has the advantages of high rock-breaking efficiency and a high rate of penetration(ROP).So far,there is no in-depth understanding of the rock-breaking mechanism for ...Torsional impact drilling is a new technology which has the advantages of high rock-breaking efficiency and a high rate of penetration(ROP).So far,there is no in-depth understanding of the rock-breaking mechanism for the ROP increase from torsional impact tools.Therefore,it has practical engineering significance to study the rock-breaking mechanism of torsional impact.In this paper,discrete element method(DEM)software(PFC2 D)is used to compare granite breaking under the steady and torsional impacting conditions.Meanwhile,the energy consumption to break rock,microscopic crushing process and chip characteristics as well as the relationship among these three factors for granite under different impacting frequencies and amplitudes are discussed.It is found that the average cutting force is smaller in the case of torsional impact cutting(TIC)than that in the case of steady loading.The mechanical specific energy(MSE)and the ratio of brittle energy consumption to total energy are negatively correlated;rock-breaking efficiency is related to the mode of action between the cutting tooth and rock.Furthermore,the ROP increase mechanism of torsional impact drilling technology is that the ratio of brittle energy consumption under the TIC condition is larger than that under a steady load;the degree of repeated fragmentation of rock chips under the TIC condition is lower than that under the steady load,and the TIC load promotes the formation of a transverse cracking network near the free surface and inhibits the formation of a deep longitudinal cracking network.展开更多
To study the rock breaking method under the free surface induced by disc cutter,the rock breaking simulations were first conducted based on the discrete element method,and the dynamic process of rock breaking under th...To study the rock breaking method under the free surface induced by disc cutter,the rock breaking simulations were first conducted based on the discrete element method,and the dynamic process of rock breaking under the free surface was studied including stressed zone,crush zone,crack initiation and propagation.Then the crack propagation conditions,specific energy,etc.under different free surface distance(S)were also investigated combined with linear cutting experiments.The results show that the rock breaking process under the free surface induced by disc cutter is dominated by tension failure mode.There exists a critical S to promote crack propagation to free surface effectively.And this rock breaking method can improve the rock breaking force and breaking efficiency significantly when proper.展开更多
Climatologically, August is the month with the most tropical cyclone(TC) formation over the western North Pacific(WNP) during the typhoon season. In this study, the reason for abnormal TC activity during August is dis...Climatologically, August is the month with the most tropical cyclone(TC) formation over the western North Pacific(WNP) during the typhoon season. In this study, the reason for abnormal TC activity during August is discussed—especially August 2014, when no TCs formed. The large-scale background of August 2014 is presented, with low-level large-scale easterly anomalies and anticyclonic anomalies dominating over the main TC genesis region, a weak monsoon trough system,and a strong WNP subtropical high(WPSH), leading to significantly reduced low-level convergence, upper-level divergence,and mid-level upward motion. These unfavorable large-scale conditions suppressed convection and cyclogenesis. In August2014, equatorial waves were inactive within the negative phase of the Madden–Julian Oscillation(MJO), with fewer tropical disturbances. Although the low-level vorticity and convection of those disturbances were partly promoted by the convective envelopes of equatorial waves, the integral evolution of disturbances, as well as the equatorial waves, were suppressed when propagating into the negative MJO phase. Moreover, the upper-level potential vorticity(PV) streamers associated with anticyclonic Rossby wave breaking events imported extratropical cold and dry air into the tropics. The peripheral tropospheric dryness and enhanced vertical wind shear by PV streamer intrusion combined with the negative MJO phase were responsible for the absence of TC formation over the WNP in August 2014.展开更多
The mechanism of stress generation and propagation by detonation loading in five separate independent advance of ore breaking patterns is discussed in the paper. An elastic numerical model was developed using AN- SYS/...The mechanism of stress generation and propagation by detonation loading in five separate independent advance of ore breaking patterns is discussed in the paper. An elastic numerical model was developed using AN- SYS/LS-DYNA 3D Nonlinear Dynamic Finite Element Software. In this package ANSYS is the preprocessor and LS-DYNA is the postprocessor. Numerical models in the paper to actual were l:10 and the element mesh was dissected in scanning mode utilizing the symmetry characteristics of the numerical model. Five different advance rates were studied. Parameters, such as the time required to maximum stress, the action time of the available stress, the maximum velocity of the nodes, the stress penetration time, the magnitude of the stress peak and the time duration for high stress were numerically simulated. The 2.2 m advance appeared optimum from an analysis of the simulation results. The results from numerical simulation have been validated by tests with physical models.展开更多
In this paper, flume experiments are focused on sediment transport inside and outside the surf zone. According to the energy dissipation balance principle of sediment-laden flow and the similarity between energy dissi...In this paper, flume experiments are focused on sediment transport inside and outside the surf zone. According to the energy dissipation balance principle of sediment-laden flow and the similarity between energy dissipation of spilling breaking wave and hydraulic jump, formulas are proposed to predict time averaged suspended sediment concentration under both non-breaking and breaking waves. Assuming that the sediment diffusion coefficient, which is related with energy dissipation, is proportional to water depth, formulas are proposed to predict close-to-bed suspended sediment concentration and vertical distribution of suspended sediment under spilling breaking waves, and the prediction shows a good agreement with the measurement.展开更多
In the process of rock breaking, the conical pick bears great cutting force and wear, as a result, high-pressure water jet technology is used to assist with cutting. However, the effect of the water jet position has n...In the process of rock breaking, the conical pick bears great cutting force and wear, as a result, high-pressure water jet technology is used to assist with cutting. However, the effect of the water jet position has not been studied for rock breaking using a pick. Therefore, the models of rock breaking with different configuration modes of the water jet are established based on SPH combined with FEM. The effect of the water jet pressure, distance between the jet and the pick bit, and cutting depth on the rock breaking performance as well as a comparison of the tension and compression stress are studied via simulation; the simulation results are verified by experiments. The numerical and experimental results indicate that the decrease in the rates of the pick force obviously increases from 25 MPa to 40 MPa, but slowly after 40 MPa, and the optimal distance between the jet and the pick bit is 2 mm under the JFP and JSP modes. The JCP mode is proved the best, followed by the modes of JRP and JFP, and the worst mode is JSP. The decrease in the rates of the pick force of the JCP, JRP, JFP, and JSP modes are up to 30.96%, 28.96%, 33.46%, 28.17%, and 25.42%, respectively, in experiment. Moreover, the JSP mode can be regarded as a special JFP model when the distance between the pick-tip and the jet impact point is 0 mm. This paper has a dominant capability in introducing new numerical and experimental method for the study of rock breaking assisted by water jet and electing the best water jet position from four different configuration modes.展开更多
The use of mechanical drilling in accessing energy resources stored in deep and hard rock formations is becoming increasingly challenging.Thus,laser irradiation has emerged as a novel drilling method with considerable...The use of mechanical drilling in accessing energy resources stored in deep and hard rock formations is becoming increasingly challenging.Thus,laser irradiation has emerged as a novel drilling method with considerable in this context.This study examines the variation of rock fracture length,fracture tortuosity,hole size,and rock breaking efficiency for a different number of holes and laser power,based on the constant total energy of laser irradiation.As indicated by the results,increasing the laser power increases the laser intensity,which helps increase the hole diameter and depth.Moreover,for the same laser power,increasing the number of irradiated holes reduces the laser energy absorbed by each hole,which is not conducive to increasing the hole depth.As the number of holes increases,the mass loss of the rock also increases,while both specific energy(SE)and modified specific energy(MSE)decrease.When the number of holes remains the same,the mass of the shale removed by low power is less than that removed by high power,while SE and MSE have an inverse relation with power.Therefore,high laser power and multiple-hole irradiation are more conducive to rock breaking.Besides,the fracture length and fracture tortuosity of the rock irradiated by the low laser power will increase first and then decrease with the increase in the number of holes,and reach the peak value when the irradiation takes place through three holes.When a high-power laser irradiates the rock,the fracture length and tortuosity will increase with the increase in the number of irradiation holes.This is because a rock irradiated by low power dissipates more energy,with the result that the energy absorbed by the sample with four irradiation holes is not enough to break the rock quickly.This study is expected to provide some guidance to break rock for drilling deep reservoirs and hard rock formations using laser irradiation.展开更多
基金supported by the Program for National Defense Science and Technology Foundation Strengtheningthe Youth Foundation of Rocket Force University of Engineering(Grant No.2021QN-B014)。
文摘A submerged cavitation water jet(SCWJ)is an effective method to recycle solid propellant from obsolete solid engines by the breaking method.Solid propellant's breaking modes and mechanical process under SCWJ impact are unclear.This study aims to understand those impact breaking mechanisms.The hydroxyl-terminated polybutadiene(HTPB)propellant was chosen as the research material,and a self-designed test system was used to conduct impact tests at four different working pressures.The high-speed camera characterized crack propagation,and the DIC method calculated strain change during the impact process.Besides,micro and macro fracture morphologies were characterized by scanning electron microscope(SEM)and computed tomography(CT)scanning.The results reveal that the compressive strain concentration region locates right below the nozzle,and the shear strain region distributes symmetrically with the jet axis,which increases to 4% at first 16th ms,the compressive strain rises to 2% and 6% in the axial and transverse direction,respectively.The two tensile cracks formed first at the compression strain concentrate region,and there generate many shear cracks around the tensile cracks,and those shear cracks that develop and aggregate cause the cracks to become wider and cut through the tensile cracks,forming the tensile-shear cracks and the impact parts eventually fail.The HTPB propellant forms a breaking hole shaped conical after impact 10 s.The mass loss increases by 17 times at maximum,with the working pressure increasing by three times.Meanwhile,the damage value of the breaking hole remaining on the surface increases by 7.8 times while 2.9 times in the depth of the breaking hole.The breaking efficiency is closely affected by working pressures.The failure modes of HTPB impacted by SCWJ are classified as tensile crack-dominated and tensile-shear crack-dominated damage mechanisms.
基金supported by the National Key Research and Development Program of China(Grant No.2019YFA0308500)the National Natural Science Foundation of China(Grant Nos.62488201,52072401,11888101,12234016,and 12174317)+4 种基金the Chinese Academy of Sciences(Grant No.YSBR-003)the Innovation Program of Quantum Science and Technology(Grant No.2021ZD0302700)the New Cornerstone Science Foundationthe China Postdoctoral Science Foundation(Grant No.2022M723111)the Fellowship of China National Postdoctoral Program for Innovative Talents(Grant No.BX20230358)。
文摘Topologically nontrivial Fe-based superconductors attract extensive attentions due to their ability of hosting Majorana zero modes(MZMs)which could be used for topological quantum computation.Topological defects such as vortex lines are required to generate MZMs.Here,we observe the robust edge states along the surface steps of CaKFe_(4)As_(4).Remarkably,the tunneling spectra show a sharp zero-bias peak(ZBP)with multiple integerquantized states at the step edge under zero magnetic field.We propose that the increasing hole doping around step edges may drive the local superconductivity into a state with possible spontaneous time-reversal symmetry breaking.Consequently,the ZBP can be interpreted as an MZM in an effective vortex in the superconducting topological surface state by proximity to the center of a tri-junction with different superconducting order parameters.Our results provide new insights into the interplay between topology and unconventional superconductivity,and pave a new path to generate MZMs without magnetic field.
文摘China’s Olympic delegation at the Paris 2024,with 404 athletes competing in 232 events across 30 sports,clinched 40 gold,27 silver,and 24 bronze medals,marking their best performance at an Olympics held abroad.The success of these athletes across various disciplines demonstrates the country’s efforts to expand its athletic prowess while also marks a new chapter for Chinese sportsmanship on the international stage.
文摘Smartex,a trailblazing leader in textile industry innovation,was proud to announce its return to ITM 2024,showcasing unparalleled advancements in quality control and production efficiency.Building on the success of previous exhibitions at ITM 2022 and ITMA Milan 2023,Smartex emerges stronger than ever,presenting its complete Smartex System tailored to transform textile manufacturing.
文摘An idealized numerical wave flume has been established by finite element method on the bases of Navier Stokes equations through prescribing the appropriate boundary conditions for the open boundary,incident boundary,free surface and solid boundary in this paper.The characteristics of waves propagating over a step have been investigated by this numerical model.The breaker wave height is determined depending on the kinetic criterion.The numerical model is verified by laboratory experiments,and the empirical formula for the damping of wave height due to breaking is also given by experiments.
基金Supported by the"Twelfth Five-Year"Key Project for Crop Breeding of Sichuan Province(YZGG4-6)the Special Support Program for the Scientific Research Personnel of Sichuan Agricultural University~~
文摘[Objective] This study aimed to understand the characters of hard seeds of Amphicarpaea edgeworthii Benth. (Leguminosae) and explore the methods for break- ing dormancy. [Method] For both aerial and subterranean seeds of A. edgeworthii, the morphological characteristics were observed and the appropriate temperature for germination was explored. For aerial seeds of A. edgeworthii, the characters of hard seeds were studied, and concentrated sulfuric acid treatment, hot water soak treat- ment and mechanical damage treatment were compared to explore the methods for breaking seed dormancy. [Result] The aerial seeds were oblate and averaged 3.38 mm in length, 3.02 mm in width, 1.88 mm in thickness, 15.32 g in thousand grain weight, with a hard seed rate after of up to 98% natural maturation. The subter- ranean seeds were approximately oblate with a maximum diameter of 15 mm and a hundred grain weight of (50.08-58.26 g); among all the treatments for breaking hardseededness, cutting seed coat treatment and concentrated sulfuric acid treatment for 20 minutes were the most effective methods, whereas hot water soak treatment was the least effective method; constant temperature between 20 and 30 ℃ was optimum for the germination of aerial seeds, and alternative temperature of 30/20 ℃ was most appropriate for the germination of subterranean seeds. [Conclusion] Cutting seed coat treatment and concentrated sulfuric acid treatment for 20 minutes were the most effective methods to break the hardseededness of A. edgeworthii.
基金supported by the National Natural Science Foundation of China(Grant No.50509007)the Program for New Century Excellent Talents in University of China(Grant No.NCET-07-0255)
文摘A quasi three-dimensional numerical model of wave-driven coastal currents with the effects of surface rollers is developed for the study of the spatial lag between the location of the maximum wave-induced current and the wave breaking point. The governing equations are derived from Navier-Stokes equations and solved by the hybrid method combining the fractional step finite different method in the horizontal plane with a Galerkin finite element method in the vertical direc- tion. The surface rollers effects are considered through incorporating the creation and evolution of the roller area into the free surface shear stress. An energy equation facilitates the computation process which transfers the wave breaking energy dissipation to the surface roller energy. The wave driver model is a phase-averaged wave model based on the wave action balance equation. Two sets of laboratory experiments producing breaking waves that generated longshore currents on a planar beach am used to evaluate the model's performance. The present wave-driven coastal current model with the roller effect in the surface shear stress term can produce satisfactory results by increasing the wave-induced nearshore current velocity inside the surf zone and shifting the location of the maximum longshore current velocity landward.
文摘The dynamic response behaviors of upright breakwaters under broken wave impact are analysed based on the mass-damper-spring dynamic system model. The effects of the mass, damping, stiffness, natural period, and impulse duration (or oscillation period) on the translation, rotation, sliding force, overturning moment, and corresponding dynamic amplifying factors are studied. It is concluded that the ampli-ying factors only depend on the ratio of the system natural period to impulse duration (or oscillation period) under a certain damping ratio. Moreover, the equivalent static approach to breakwater design is also discussed.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 40476062 and 10374026).
文摘Based on the effective medium approximation theory of composites, the whitecap-covered sea surface is treated as a medium layer of dense seawater droplets and air. Two electromagnetic scattering models of randomly rough surface are applied to the investigation of microwave backscattering of breaking waves driven by strong wind. The shapes of seawater droplets are considered by calculating the effective dielectric constant of the whitecap layer. The responses of seawater droplets shapes, such as sphere and ellipsoid, to the backscattering coefficient are discussed. Numerical results of the models are in good agreement with the experimental measurements of horizontally and vertically polarized backscattering at microwave frequency 13.9GHz and different incidence angles.
基金This research was partially supported by the National Natural Science Foundation of China (Grant No. 50379002),the Korea Research Council of Public Science and Technology (Principal R&D Program) and Korea Ministry of Science and Technology (International Collaboration Research Program)
文摘An experimental scheme for the generation of directional focusing waves in a wave basin is established in this paper. The effects of the directional range, frequency width and center frequency on the wave focusing are studied. The distribution of maximum amplitude and the evolution of time series and spectra during wave packet propagation and the variation of water surface parameters are extensively investigated. The results reveal that the characteristics of focusing waves are significantly influenced by wave directionality and that the breaking criteria for directional waves are distinctly different from those for unidirectional waves.
基金supported by the cooperative project of the Chinese Academy of Sciencesthe China National Offshore Oil Corporation+1 种基金the National Natural Science Foundation of China under contract Nos 40376008 and 40476008Open Projects of the Key Laboratory of Physical Oceanography of Ministry of Education of China under contract No.200310.
文摘A one-dimensional mixed-layer model, including a Mellor- Yamada level 2.5 turbulence closure scheme, was implemented to investi- gate the dynamical and thermal structures of the ocean surface mixed layer in the northern South China Sea. The turbulent kinetic ener- gy released through wave breaking was incorporated into the model as a source of energy at the ocean surface, and the influence of the breaking waves on the mixed layer was studied. The numerical simulations show that the simulated SST is overestimated in summer without the breaking waves. However, the cooler SST is simulated when the effect of the breaking waves is considered, the corre- sponding discrepancy with the observed data decreases up to 20% and the MLD calculated averagely deepens 3.8 m. Owing to the wave-enhanced turbulence mixing in the summertime, the stratification at the bottom of the mixed layer was modified and the tempera- ture gradient spread throughout the whole thermocline compared with the concentrated distribution without wave breaking.
基金The project supported by the Natural Science Foundation of Zhejiang Province under Grant No. Y604106, the Foundation of New Century 151 Talent Engineering of Zhejiang Province, and the Natural Science Foundation of Zhejiang Lishui University under Grant No. KZ05010 Acknowledgments The authors would like to thank professor Chun-Long Zheng for his fruitful and helpful suggestions.
文摘By means of an improved mapping method and a variable separation method, a series of variable separation solutions including solitary wave solutions, periodic wave solutions and rational function solutions) to the (2+1)-dimensional breaking soliton system is derived. Based on the derived solitary wave excitation, we obtain some special annihilation solitons and chaotic solitons in this short note.
基金supported by the National Natural Science Foundation of China(Grant No.51674214)International Cooperation Project of Sichuan Science and Technology Plan(2016HH0008)+1 种基金Youth Science and Technology Innovation Research Team of Sichuan Province(2017TD0014)Applied Basic Research of Sichuan Province(Free Exploration-2019YJ0520)
文摘Torsional impact drilling is a new technology which has the advantages of high rock-breaking efficiency and a high rate of penetration(ROP).So far,there is no in-depth understanding of the rock-breaking mechanism for the ROP increase from torsional impact tools.Therefore,it has practical engineering significance to study the rock-breaking mechanism of torsional impact.In this paper,discrete element method(DEM)software(PFC2 D)is used to compare granite breaking under the steady and torsional impacting conditions.Meanwhile,the energy consumption to break rock,microscopic crushing process and chip characteristics as well as the relationship among these three factors for granite under different impacting frequencies and amplitudes are discussed.It is found that the average cutting force is smaller in the case of torsional impact cutting(TIC)than that in the case of steady loading.The mechanical specific energy(MSE)and the ratio of brittle energy consumption to total energy are negatively correlated;rock-breaking efficiency is related to the mode of action between the cutting tooth and rock.Furthermore,the ROP increase mechanism of torsional impact drilling technology is that the ratio of brittle energy consumption under the TIC condition is larger than that under a steady load;the degree of repeated fragmentation of rock chips under the TIC condition is lower than that under the steady load,and the TIC load promotes the formation of a transverse cracking network near the free surface and inhibits the formation of a deep longitudinal cracking network.
基金Project(2013CB035401)supported by the National Basic Research Program of ChinaProject(2012AA041803)supported by the National High-Technology Research and Development Program of China+2 种基金Project(51475478)supported by the National Natural Science Foundation of ChinaProject(2015GK1029)supported by the Science and Technology Project of Strategic Emerging Industry in Hunan Province,ChinaProject(CX2017B048)supported by the Hunan Provincial Innovation Foundation For Postgraduate,China
文摘To study the rock breaking method under the free surface induced by disc cutter,the rock breaking simulations were first conducted based on the discrete element method,and the dynamic process of rock breaking under the free surface was studied including stressed zone,crush zone,crack initiation and propagation.Then the crack propagation conditions,specific energy,etc.under different free surface distance(S)were also investigated combined with linear cutting experiments.The results show that the rock breaking process under the free surface induced by disc cutter is dominated by tension failure mode.There exists a critical S to promote crack propagation to free surface effectively.And this rock breaking method can improve the rock breaking force and breaking efficiency significantly when proper.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41475074, 41775063 and 41475046)
文摘Climatologically, August is the month with the most tropical cyclone(TC) formation over the western North Pacific(WNP) during the typhoon season. In this study, the reason for abnormal TC activity during August is discussed—especially August 2014, when no TCs formed. The large-scale background of August 2014 is presented, with low-level large-scale easterly anomalies and anticyclonic anomalies dominating over the main TC genesis region, a weak monsoon trough system,and a strong WNP subtropical high(WPSH), leading to significantly reduced low-level convergence, upper-level divergence,and mid-level upward motion. These unfavorable large-scale conditions suppressed convection and cyclogenesis. In August2014, equatorial waves were inactive within the negative phase of the Madden–Julian Oscillation(MJO), with fewer tropical disturbances. Although the low-level vorticity and convection of those disturbances were partly promoted by the convective envelopes of equatorial waves, the integral evolution of disturbances, as well as the equatorial waves, were suppressed when propagating into the negative MJO phase. Moreover, the upper-level potential vorticity(PV) streamers associated with anticyclonic Rossby wave breaking events imported extratropical cold and dry air into the tropics. The peripheral tropospheric dryness and enhanced vertical wind shear by PV streamer intrusion combined with the negative MJO phase were responsible for the absence of TC formation over the WNP in August 2014.
文摘The mechanism of stress generation and propagation by detonation loading in five separate independent advance of ore breaking patterns is discussed in the paper. An elastic numerical model was developed using AN- SYS/LS-DYNA 3D Nonlinear Dynamic Finite Element Software. In this package ANSYS is the preprocessor and LS-DYNA is the postprocessor. Numerical models in the paper to actual were l:10 and the element mesh was dissected in scanning mode utilizing the symmetry characteristics of the numerical model. Five different advance rates were studied. Parameters, such as the time required to maximum stress, the action time of the available stress, the maximum velocity of the nodes, the stress penetration time, the magnitude of the stress peak and the time duration for high stress were numerically simulated. The 2.2 m advance appeared optimum from an analysis of the simulation results. The results from numerical simulation have been validated by tests with physical models.
基金supported by special fund for important and large scientific and technical projects from the Ministry of Communications (Grant No. 201132874660)funds from Nanjing Hydraulic Research Institute (Grant No. Y210001)
文摘In this paper, flume experiments are focused on sediment transport inside and outside the surf zone. According to the energy dissipation balance principle of sediment-laden flow and the similarity between energy dissipation of spilling breaking wave and hydraulic jump, formulas are proposed to predict time averaged suspended sediment concentration under both non-breaking and breaking waves. Assuming that the sediment diffusion coefficient, which is related with energy dissipation, is proportional to water depth, formulas are proposed to predict close-to-bed suspended sediment concentration and vertical distribution of suspended sediment under spilling breaking waves, and the prediction shows a good agreement with the measurement.
基金Supported by National Natural Science Foundation of China(Grant No.51375478)the Fundamental Research Funds for the Central Universities,China(Grant No.2014ZDPY12)the Priority Academic Program Development of Jiangsu High Education Institute of China
文摘In the process of rock breaking, the conical pick bears great cutting force and wear, as a result, high-pressure water jet technology is used to assist with cutting. However, the effect of the water jet position has not been studied for rock breaking using a pick. Therefore, the models of rock breaking with different configuration modes of the water jet are established based on SPH combined with FEM. The effect of the water jet pressure, distance between the jet and the pick bit, and cutting depth on the rock breaking performance as well as a comparison of the tension and compression stress are studied via simulation; the simulation results are verified by experiments. The numerical and experimental results indicate that the decrease in the rates of the pick force obviously increases from 25 MPa to 40 MPa, but slowly after 40 MPa, and the optimal distance between the jet and the pick bit is 2 mm under the JFP and JSP modes. The JCP mode is proved the best, followed by the modes of JRP and JFP, and the worst mode is JSP. The decrease in the rates of the pick force of the JCP, JRP, JFP, and JSP modes are up to 30.96%, 28.96%, 33.46%, 28.17%, and 25.42%, respectively, in experiment. Moreover, the JSP mode can be regarded as a special JFP model when the distance between the pick-tip and the jet impact point is 0 mm. This paper has a dominant capability in introducing new numerical and experimental method for the study of rock breaking assisted by water jet and electing the best water jet position from four different configuration modes.
基金supported by the National Natural Science Foundation of China(No.52174004 and No.51804318)the National Key Research and Development Program of China(No.2018YFC0808401)
文摘The use of mechanical drilling in accessing energy resources stored in deep and hard rock formations is becoming increasingly challenging.Thus,laser irradiation has emerged as a novel drilling method with considerable in this context.This study examines the variation of rock fracture length,fracture tortuosity,hole size,and rock breaking efficiency for a different number of holes and laser power,based on the constant total energy of laser irradiation.As indicated by the results,increasing the laser power increases the laser intensity,which helps increase the hole diameter and depth.Moreover,for the same laser power,increasing the number of irradiated holes reduces the laser energy absorbed by each hole,which is not conducive to increasing the hole depth.As the number of holes increases,the mass loss of the rock also increases,while both specific energy(SE)and modified specific energy(MSE)decrease.When the number of holes remains the same,the mass of the shale removed by low power is less than that removed by high power,while SE and MSE have an inverse relation with power.Therefore,high laser power and multiple-hole irradiation are more conducive to rock breaking.Besides,the fracture length and fracture tortuosity of the rock irradiated by the low laser power will increase first and then decrease with the increase in the number of holes,and reach the peak value when the irradiation takes place through three holes.When a high-power laser irradiates the rock,the fracture length and tortuosity will increase with the increase in the number of irradiation holes.This is because a rock irradiated by low power dissipates more energy,with the result that the energy absorbed by the sample with four irradiation holes is not enough to break the rock quickly.This study is expected to provide some guidance to break rock for drilling deep reservoirs and hard rock formations using laser irradiation.