Objective:To explore the diagnostic value of ultrasound imaging for breast nodules of breast imaging-reporting and data system(BI-RADS)category 3 and above.Methods:From June 2021 to July 2022,163 patients with breast ...Objective:To explore the diagnostic value of ultrasound imaging for breast nodules of breast imaging-reporting and data system(BI-RADS)category 3 and above.Methods:From June 2021 to July 2022,163 patients with breast nodules of BI-RADS 3 or above were selected as the research subjects.After pathological diagnosis,24 cases were malignant breast nodules of BI-RADS 3 or above,while 139 cases were benign breast nodules of BI-RADS 3 or above.The diagnosis rate of malignant and benign breast nodules of BI-RADS 3 or above,including 95%CI,was observed and analyzed.Results:The malignant and benign detection rates of conventional ultrasound were 88.63%and 75.00%,respectively,and the malignant and benign detection rates of ultrasound imaging were 93.18%and 87.50%,respectively,with 95%CIs greater than 0.7.Conclusion:Ultrasound imaging can help improve the diagnostic accuracy of benign and malignant breast nodules of BI-RADS 3 and above and reduce the misdiagnosis rate.展开更多
AIM: To determine whether contrast-enhanced ultrasound(CEUS) can improve the precision of breast imaging reporting and data system(BI-RADS) categorization. METHODS: A total of 230 patients with 235 solid breast lesion...AIM: To determine whether contrast-enhanced ultrasound(CEUS) can improve the precision of breast imaging reporting and data system(BI-RADS) categorization. METHODS: A total of 230 patients with 235 solid breast lesions classified as BI-RADS 4 on conventional ultrasound were evaluated. CEUS was performed within one week before core needle biopsy or surgical resection and a revised BI-RADS classification was assigned based on 10 CEUS imaging characteristics. Receiver operating characteristic curve analysis was then conducted to evaluate the diagnostic performance of CEUS-based BI-RADS assignment with pathological examination as reference criteria. RESULTS: The CEUS-based BI-RADS evaluation classified 116/235(49.36%) lesions into category 3, 20(8.51%), 13(5.53%) and 12(5.11%) lesions into categories 4A, 4B and 4C, respectively, and 74(31.49%) into category 5. Selecting CEUS-based BI-RADS category 4A as an appropriate cut-off gave sensitivity and specificity values of 85.4% and 87.8%, respectively, for the diagnosisof malignant disease. The cancer-to-biopsy yield was 73.11% with CEUS-based BI-RADS 4A selected as the biopsy threshold compared with 40.85% otherwise, while the biopsy rate was only 42.13% compared with 100% otherwise. Overall, only 4.68% of invasive cancers were misdiagnosed.CONCLUSION: This pilot study suggests that evaluation of BI-RADS 4 breast lesions with CEUS results in reduced biopsy rates and increased cancer-to-biopsy yields.展开更多
AIM: To build and evaluate predictive models for contrast-enhanced ultrasound(CEUS) of the breast to distinguish between benign and malignant lesions. METHODS: A total of 235 breast imaging reporting and data system(B...AIM: To build and evaluate predictive models for contrast-enhanced ultrasound(CEUS) of the breast to distinguish between benign and malignant lesions. METHODS: A total of 235 breast imaging reporting and data system(BI-RADS) 4 solid breast lesions were imaged via CEUS before core needle biopsy or surgical resection. CEUS results were analyzed on 10 enhancing patterns to evaluate diagnostic performance of three benign and three malignant CEUS models, with pathological results used as the gold standard. A logistic regression model was developed basing on the CEUS results, and then evaluated with receiver operating curve(ROC). RESULTS: Except in cases of enhanced homogeneity, the rest of the 9 enhancement appearances were statistically significant(P < 0.05). These 9 enhancement patterns were selected in the final step of the logistic regression analysis, with diagnostic sensitivity and specificity of 84.4% and 82.7%, respectively, and the area under the ROC curve of 0.911. Diagnostic sensitivity, specificity, and accuracy of the malignant vs benign CEUS models were 84.38%, 87.77%, 86.38% and 86.46%, 81.29% and 83.40%, respectively. CONCLUSION: The breast CEUS models can predict risk of malignant breast lesions more accurately, decrease false-positive biopsy, and provide accurate BIRADS classification.展开更多
Background:Data from RNA-seq experiments provide a wealth of information about the transcriptome of an organism.However,the analysis of such data is very demanding.In this study,we aimed to establish robust analysis p...Background:Data from RNA-seq experiments provide a wealth of information about the transcriptome of an organism.However,the analysis of such data is very demanding.In this study,we aimed to establish robust analysis procedures that can be used in clinical practice.Methods:We studied RNA-seq data from triple-negative breast cancer patients.Specifically,we investigated the subsampling of RNA-seq data.Results:The main results of our investigations are as follows:(1) the subsampling of RNA-seq data gave biologically realistic simulations of sequencing experiments with smaller sequencing depth but not direct scaling of count matrices;(2) the saturation of results required an average sequencing depth larger than 32 million reads and an individual sequencing depth larger than 46 million reads;and(3) for an abrogated feature selection,higher moments of the distribution of all expressed genes had a higher sensitivity for signal detection than the corresponding mean values.Conclusions:Our results reveal important characteristics of RNA-seq data that must be understood before one can apply such an approach to translational medicine.展开更多
Objective:To explore the development status,research hotspots and future development trend of traditional Chinese medicine nursing in the field of breast diseases by the bibliometric method.Methods:using CNKI,Wanfang,...Objective:To explore the development status,research hotspots and future development trend of traditional Chinese medicine nursing in the field of breast diseases by the bibliometric method.Methods:using CNKI,Wanfang,VIP and SINOMED databases as data sources,the literature related to breast traditional Chinese medicine nursing were obtained by keyword search,and BICOMB 2.01 was used to extract and count the information such as publication year,keywords and so on,and the word matrix was formed.SPSS 21.0 was used to cluster the extracted keywords.Results:a total of 839 articles were included,which came from 348 journals and 48 high-frequency words.Four main research topics were formed by keyword clustering:TCM nursing of breast cancer,TCM nursing of breast abscess/mass,TCM nursing of postpartum breast,TCM nursing of acute mastitis.Conclusion:the TCM nursing literature in the field of breast disease is increasing rapidly,but theoverall quality of the published literature is low,so more scientific and standardized TCM nursing original research is urgently needed.展开更多
Women from middle age to old age are mostly screened positive for Breast cancer which leads to death.Times over the past decades,the overall sur-vival rate in breast cancer has improved due to advancements in early-st...Women from middle age to old age are mostly screened positive for Breast cancer which leads to death.Times over the past decades,the overall sur-vival rate in breast cancer has improved due to advancements in early-stage diag-nosis and tailored therapy.Today all hospital brings high awareness and early detection technologies for breast cancer.This increases the survival rate of women.Though traditional breast cancer treatment takes so long,early cancer techniques require an automation system.This research provides a new methodol-ogy for classifying breast cancer using ultrasound pictures that use deep learning and the combination of the best characteristics.Initially,after successful learning of Convolutional Neural Network(CNN)algorithms,data augmentation is used to enhance the representation of the feature dataset.Then it uses BreastNet18 withfine-tuned VGG-16 model for pre-training the augmented dataset.For feature classification,Entropy controlled Whale Optimization Algorithm(EWOA)is used.The features that have been optimized using the EWOA were utilized to fuse and optimize the data.To identify the breast cancer pictures,training classifiers are used.By using the novel probability-based serial technique,the best-chosen characteristics are fused and categorized by machine learning techniques.The main objective behind the research is to increase tumor prediction accuracy for saving human life.The testing was performed using a dataset of enhanced Breast Ultrasound Images(BUSI).The proposed method improves the accuracy com-pared with the existing methods.展开更多
Breast cancer is one of the most common cancers among women in the world, with more than two million new cases of breast cancer every year. This disease is associated with numerous clinical and genetic characteristics...Breast cancer is one of the most common cancers among women in the world, with more than two million new cases of breast cancer every year. This disease is associated with numerous clinical and genetic characteristics. In recent years, machine learning technology has been increasingly applied to the medical field, including predicting the risk of malignant tumors such as breast cancer. Based on clinical and targeted sequencing data of 1980 primary breast cancer samples, this article aimed to analyze these data and predict living conditions after breast cancer. After data engineering, feature selection, and comparison of machine learning methods, the light gradient boosting machine model was found the best with hyperparameter tuning (precision = 0.818, recall = 0.816, f1 score = 0.817, roc-auc = 0.867). And the top 5 determinants were clinical features age at diagnosis, Nottingham Prognostic Index, cohort and genetic features rheb, nr3c1. The study shed light on rational allocation of medical resources and provided insights to early prevention, diagnosis and treatment of breast cancer with the identified risk clinical and genetic factors.展开更多
自2013年美国放射学会出版第二版乳腺影像报告和数据系统(Breast Imaging Reporting and Data System,BI-RADS)后,乳腺超声的临床实践与科学研究均从中获益。本文总结了2013年版超声BI-RADS出版这10年间,乳腺超声影像技术临床应用与革...自2013年美国放射学会出版第二版乳腺影像报告和数据系统(Breast Imaging Reporting and Data System,BI-RADS)后,乳腺超声的临床实践与科学研究均从中获益。本文总结了2013年版超声BI-RADS出版这10年间,乳腺超声影像技术临床应用与革新、存在的问题与面临的挑战及未来的发展机遇,以期为临床诊治、指南推广与应用提供帮助。展开更多
乳腺肿瘤是一种常见的恶性肿瘤,其临床诊断不但费时费力,还容易出现误诊.本文旨在建立一个基于乳腺数据自动分割的乳腺肿瘤计算机辅助诊断模型,提高临床诊断的速度和准确率.为了用卷积神经网络U-Net模型分割对比增强锥光束乳腺计算机断...乳腺肿瘤是一种常见的恶性肿瘤,其临床诊断不但费时费力,还容易出现误诊.本文旨在建立一个基于乳腺数据自动分割的乳腺肿瘤计算机辅助诊断模型,提高临床诊断的速度和准确率.为了用卷积神经网络U-Net模型分割对比增强锥光束乳腺计算机断层扫描(Contrast-Enhanced Cone-Beam Breast CT,CE-CBBCT)数据,本文首先沿冠状面将3维数据转换成2维切片,通过数据默认的窗口对其进行归一化处理.实验结果显示,使用U-Net卷积神经网络对数据进行分割,Dice系数和IoU(Intersection over Union)分别为0.7920和0.6962.然后,本文用不同骨干网络(即各种深度学习分类网络)去替换U-Net的编码器,再次进行分割并对比不同特征提取对分割性能的影响,发现旋转增广方式可以提升各分割网络的性能.其中,基于ResNet152的U形分割网络的性能最好,Dice系数和IoU分别达到0.8410和0.7576.随后,本文又在所有模型中选取5个性能最好的模型组成一个集成模型,重复分割实验,发现此模型有最佳分割性能,平均Dice系数和IoU可达0.8463和0.7676,性能显著提升.值得指出的是,在处理数据时本文仅使用数据默认的窗口,降低了对人工的依赖.展开更多
文摘Objective:To explore the diagnostic value of ultrasound imaging for breast nodules of breast imaging-reporting and data system(BI-RADS)category 3 and above.Methods:From June 2021 to July 2022,163 patients with breast nodules of BI-RADS 3 or above were selected as the research subjects.After pathological diagnosis,24 cases were malignant breast nodules of BI-RADS 3 or above,while 139 cases were benign breast nodules of BI-RADS 3 or above.The diagnosis rate of malignant and benign breast nodules of BI-RADS 3 or above,including 95%CI,was observed and analyzed.Results:The malignant and benign detection rates of conventional ultrasound were 88.63%and 75.00%,respectively,and the malignant and benign detection rates of ultrasound imaging were 93.18%and 87.50%,respectively,with 95%CIs greater than 0.7.Conclusion:Ultrasound imaging can help improve the diagnostic accuracy of benign and malignant breast nodules of BI-RADS 3 and above and reduce the misdiagnosis rate.
文摘AIM: To determine whether contrast-enhanced ultrasound(CEUS) can improve the precision of breast imaging reporting and data system(BI-RADS) categorization. METHODS: A total of 230 patients with 235 solid breast lesions classified as BI-RADS 4 on conventional ultrasound were evaluated. CEUS was performed within one week before core needle biopsy or surgical resection and a revised BI-RADS classification was assigned based on 10 CEUS imaging characteristics. Receiver operating characteristic curve analysis was then conducted to evaluate the diagnostic performance of CEUS-based BI-RADS assignment with pathological examination as reference criteria. RESULTS: The CEUS-based BI-RADS evaluation classified 116/235(49.36%) lesions into category 3, 20(8.51%), 13(5.53%) and 12(5.11%) lesions into categories 4A, 4B and 4C, respectively, and 74(31.49%) into category 5. Selecting CEUS-based BI-RADS category 4A as an appropriate cut-off gave sensitivity and specificity values of 85.4% and 87.8%, respectively, for the diagnosisof malignant disease. The cancer-to-biopsy yield was 73.11% with CEUS-based BI-RADS 4A selected as the biopsy threshold compared with 40.85% otherwise, while the biopsy rate was only 42.13% compared with 100% otherwise. Overall, only 4.68% of invasive cancers were misdiagnosed.CONCLUSION: This pilot study suggests that evaluation of BI-RADS 4 breast lesions with CEUS results in reduced biopsy rates and increased cancer-to-biopsy yields.
文摘AIM: To build and evaluate predictive models for contrast-enhanced ultrasound(CEUS) of the breast to distinguish between benign and malignant lesions. METHODS: A total of 235 breast imaging reporting and data system(BI-RADS) 4 solid breast lesions were imaged via CEUS before core needle biopsy or surgical resection. CEUS results were analyzed on 10 enhancing patterns to evaluate diagnostic performance of three benign and three malignant CEUS models, with pathological results used as the gold standard. A logistic regression model was developed basing on the CEUS results, and then evaluated with receiver operating curve(ROC). RESULTS: Except in cases of enhanced homogeneity, the rest of the 9 enhancement appearances were statistically significant(P < 0.05). These 9 enhancement patterns were selected in the final step of the logistic regression analysis, with diagnostic sensitivity and specificity of 84.4% and 82.7%, respectively, and the area under the ROC curve of 0.911. Diagnostic sensitivity, specificity, and accuracy of the malignant vs benign CEUS models were 84.38%, 87.77%, 86.38% and 86.46%, 81.29% and 83.40%, respectively. CONCLUSION: The breast CEUS models can predict risk of malignant breast lesions more accurately, decrease false-positive biopsy, and provide accurate BIRADS classification.
基金supported In part by the Arkansas Biosciences Institute under Grant(No.UL1TR000039)the IDeANetworks of Biomedical Research Excellence(INBRE) Grant(No.P20RR16460)
文摘Background:Data from RNA-seq experiments provide a wealth of information about the transcriptome of an organism.However,the analysis of such data is very demanding.In this study,we aimed to establish robust analysis procedures that can be used in clinical practice.Methods:We studied RNA-seq data from triple-negative breast cancer patients.Specifically,we investigated the subsampling of RNA-seq data.Results:The main results of our investigations are as follows:(1) the subsampling of RNA-seq data gave biologically realistic simulations of sequencing experiments with smaller sequencing depth but not direct scaling of count matrices;(2) the saturation of results required an average sequencing depth larger than 32 million reads and an individual sequencing depth larger than 46 million reads;and(3) for an abrogated feature selection,higher moments of the distribution of all expressed genes had a higher sensitivity for signal detection than the corresponding mean values.Conclusions:Our results reveal important characteristics of RNA-seq data that must be understood before one can apply such an approach to translational medicine.
文摘Objective:To explore the development status,research hotspots and future development trend of traditional Chinese medicine nursing in the field of breast diseases by the bibliometric method.Methods:using CNKI,Wanfang,VIP and SINOMED databases as data sources,the literature related to breast traditional Chinese medicine nursing were obtained by keyword search,and BICOMB 2.01 was used to extract and count the information such as publication year,keywords and so on,and the word matrix was formed.SPSS 21.0 was used to cluster the extracted keywords.Results:a total of 839 articles were included,which came from 348 journals and 48 high-frequency words.Four main research topics were formed by keyword clustering:TCM nursing of breast cancer,TCM nursing of breast abscess/mass,TCM nursing of postpartum breast,TCM nursing of acute mastitis.Conclusion:the TCM nursing literature in the field of breast disease is increasing rapidly,but theoverall quality of the published literature is low,so more scientific and standardized TCM nursing original research is urgently needed.
文摘Women from middle age to old age are mostly screened positive for Breast cancer which leads to death.Times over the past decades,the overall sur-vival rate in breast cancer has improved due to advancements in early-stage diag-nosis and tailored therapy.Today all hospital brings high awareness and early detection technologies for breast cancer.This increases the survival rate of women.Though traditional breast cancer treatment takes so long,early cancer techniques require an automation system.This research provides a new methodol-ogy for classifying breast cancer using ultrasound pictures that use deep learning and the combination of the best characteristics.Initially,after successful learning of Convolutional Neural Network(CNN)algorithms,data augmentation is used to enhance the representation of the feature dataset.Then it uses BreastNet18 withfine-tuned VGG-16 model for pre-training the augmented dataset.For feature classification,Entropy controlled Whale Optimization Algorithm(EWOA)is used.The features that have been optimized using the EWOA were utilized to fuse and optimize the data.To identify the breast cancer pictures,training classifiers are used.By using the novel probability-based serial technique,the best-chosen characteristics are fused and categorized by machine learning techniques.The main objective behind the research is to increase tumor prediction accuracy for saving human life.The testing was performed using a dataset of enhanced Breast Ultrasound Images(BUSI).The proposed method improves the accuracy com-pared with the existing methods.
文摘Breast cancer is one of the most common cancers among women in the world, with more than two million new cases of breast cancer every year. This disease is associated with numerous clinical and genetic characteristics. In recent years, machine learning technology has been increasingly applied to the medical field, including predicting the risk of malignant tumors such as breast cancer. Based on clinical and targeted sequencing data of 1980 primary breast cancer samples, this article aimed to analyze these data and predict living conditions after breast cancer. After data engineering, feature selection, and comparison of machine learning methods, the light gradient boosting machine model was found the best with hyperparameter tuning (precision = 0.818, recall = 0.816, f1 score = 0.817, roc-auc = 0.867). And the top 5 determinants were clinical features age at diagnosis, Nottingham Prognostic Index, cohort and genetic features rheb, nr3c1. The study shed light on rational allocation of medical resources and provided insights to early prevention, diagnosis and treatment of breast cancer with the identified risk clinical and genetic factors.
文摘自2013年美国放射学会出版第二版乳腺影像报告和数据系统(Breast Imaging Reporting and Data System,BI-RADS)后,乳腺超声的临床实践与科学研究均从中获益。本文总结了2013年版超声BI-RADS出版这10年间,乳腺超声影像技术临床应用与革新、存在的问题与面临的挑战及未来的发展机遇,以期为临床诊治、指南推广与应用提供帮助。
文摘乳腺肿瘤是一种常见的恶性肿瘤,其临床诊断不但费时费力,还容易出现误诊.本文旨在建立一个基于乳腺数据自动分割的乳腺肿瘤计算机辅助诊断模型,提高临床诊断的速度和准确率.为了用卷积神经网络U-Net模型分割对比增强锥光束乳腺计算机断层扫描(Contrast-Enhanced Cone-Beam Breast CT,CE-CBBCT)数据,本文首先沿冠状面将3维数据转换成2维切片,通过数据默认的窗口对其进行归一化处理.实验结果显示,使用U-Net卷积神经网络对数据进行分割,Dice系数和IoU(Intersection over Union)分别为0.7920和0.6962.然后,本文用不同骨干网络(即各种深度学习分类网络)去替换U-Net的编码器,再次进行分割并对比不同特征提取对分割性能的影响,发现旋转增广方式可以提升各分割网络的性能.其中,基于ResNet152的U形分割网络的性能最好,Dice系数和IoU分别达到0.8410和0.7576.随后,本文又在所有模型中选取5个性能最好的模型组成一个集成模型,重复分割实验,发现此模型有最佳分割性能,平均Dice系数和IoU可达0.8463和0.7676,性能显著提升.值得指出的是,在处理数据时本文仅使用数据默认的窗口,降低了对人工的依赖.