The(2+1)-dimensional Chaffee–Infante has a wide range of applications in science and engineering,including nonlinear fiber optics,electromagnetic field waves,signal processing through optical fibers,plasma physics,co...The(2+1)-dimensional Chaffee–Infante has a wide range of applications in science and engineering,including nonlinear fiber optics,electromagnetic field waves,signal processing through optical fibers,plasma physics,coastal engineering,fluid dynamics and is particularly useful for modeling ion-acoustic waves in plasma and sound waves.In this paper,this equation is investigated and analyzed using two effective schemes.The well-known tanh-coth and sine-cosine function schemes are employed to establish analytical solutions for the equation under consideration.The breather wave solutions are derived using the Cole–Hopf transformation.In addition,by means of new conservation theorem,we construct conservation laws(CLs)for the governing equation by means of Lie–Bäcklund symmetries.The novel characteristics for the(2+1)-dimensional Chaffee–Infante equation obtained in this work can be of great importance in nonlinear sciences and ocean engineering.展开更多
This paper studies the(2+1)-dimensional Hirota-Satsuma-Ito equation.Based on an associated Hirota bilinear form,lump-type solution,two types of interaction solutions,and breather wave solution of the(2+1)-dimensional ...This paper studies the(2+1)-dimensional Hirota-Satsuma-Ito equation.Based on an associated Hirota bilinear form,lump-type solution,two types of interaction solutions,and breather wave solution of the(2+1)-dimensional Hirota-Satsuma-Ito equation are obtained,which are all related to the seed solution of the equation.It is interesting that the rogue wave is aroused by the interaction between one-lump soliton and a pair of resonance stripe solitons,and the fusion and fission phenomena are also found in the interaction between lump solitons and one-stripe soliton.Furthermore,the breather wave solution is also obtained by reducing the two-soliton solutions.The trajectory and period of the one-order breather wave are analyzed.The corresponding dynamical characteristics are demonstrated by the graphs.展开更多
By employing the Hirota’s bilinear method and different test functions, the breather solutions of HSI equation with different structures are obtained based on symbolic calculation with perturbation parameters. Some n...By employing the Hirota’s bilinear method and different test functions, the breather solutions of HSI equation with different structures are obtained based on symbolic calculation with perturbation parameters. Some new lump solitons are found in the process of studying the degradation behavior of breather solutions. The interaction between lump solution and soliton solution is constructed in the form of lump solution, and the motion trajectory of lump is obtained. In addition, the theorem of lump solitons and N-solitons superposition is given and proved. The superposition formula of lump is derived from the theorem, and its spatial evolution behavior is given.展开更多
Exact heteroclinic breather-wave solutions for Davey-Stewartson (DSI, DSII) system with periodic boundary condition are constructed using Hirota's bilinear form method and generalized ansatz method. The heteroclini...Exact heteroclinic breather-wave solutions for Davey-Stewartson (DSI, DSII) system with periodic boundary condition are constructed using Hirota's bilinear form method and generalized ansatz method. The heteroclinic structure of wave is investigated.展开更多
This study investigates the (3+1)-dimensional soliton equation via the Hirota bilinear approach and symbolic computations. We successfully construct some new lump, lump-kink, breather wave, lump periodic, and some oth...This study investigates the (3+1)-dimensional soliton equation via the Hirota bilinear approach and symbolic computations. We successfully construct some new lump, lump-kink, breather wave, lump periodic, and some other new interaction solutions. All the reported solutions are verified by inserting them into the original equation with the help of the Wolfram Mathematica package. The solution’s visual characteristics are graphically represented in order to shed more light on the results obtained. The findings obtained are useful in understanding the basic nonlinear fluid dynamic scenarios as well as the dynamics of computational physics and engineering sciences in the related nonlinear higher dimensional wave fields.展开更多
The current study employs the novel Hirota bilinear scheme to investigate the nonlinear model.Thus,we acquire some two-wave and breather wave solutions to the governing equation.Breathers are pulsating localized struc...The current study employs the novel Hirota bilinear scheme to investigate the nonlinear model.Thus,we acquire some two-wave and breather wave solutions to the governing equation.Breathers are pulsating localized structures that have been used to mimic extreme waves in a variety of nonlinear dispersive media with a narrow banded starting process.Several recent investigations,on the other hand,imply that breathers can survive in more complex habitats,such as random seas,despite the attributed physical restrictions.The authenticity and genuineness of all the acquired solutions agreed with the original equation.In order to shed more light on these novel solutions,we plot the 3-dimensional and contour graphs to the reported solutions with some suitable values.The governing model is also stable because of the idea of linear stability.The study’s findings may help explain the physics behind some of the challenges facing ocean engineers.展开更多
Based on the developed Darboux transformation, we investigate the exact asymmetric solutions of breather and rogue waves in pair-transition-coupled nonlinear Schr?dinger equations. As an example, some types of exact b...Based on the developed Darboux transformation, we investigate the exact asymmetric solutions of breather and rogue waves in pair-transition-coupled nonlinear Schr?dinger equations. As an example, some types of exact breather solutions are given analytically by adjusting the parameters. Moreover, the interesting fundamental problem is to clarify the formation mechanism of asymmetry breather solutions and how the particle number and energy exchange between the background and soliton ultimately form the breather solutions. Our results also show that the formation mechanism from breather to rogue wave arises from the transformation from the periodic total exchange into the temporal local property.展开更多
We derive an N-fold Darboux transformation for the nonlinear Schrdinger equation coupled to a multiple selfinduced transparency system, which is applicable to optical fiber communications in the erbium-doped medium.Th...We derive an N-fold Darboux transformation for the nonlinear Schrdinger equation coupled to a multiple selfinduced transparency system, which is applicable to optical fiber communications in the erbium-doped medium.The N-soliton, N-breather and N th-order rogue wave solutions in the compact determinant representations are derived using the Darboux transformation and limit technique. Dynamics of such solutions from the first-to second-order ones are shown.展开更多
In this paper,by using the Darboux transformation(DT)method and the Taylor expansion method,a new nth-order determinant of the hybrid rogue waves and breathers solution on the double-periodic background of the Kundu-D...In this paper,by using the Darboux transformation(DT)method and the Taylor expansion method,a new nth-order determinant of the hybrid rogue waves and breathers solution on the double-periodic background of the Kundu-DNLS equation is constructed when n is even.Breathers and rogue waves can be obtained from this determinant,respectively.Further to this,the hybrid rogue waves and breathers solutions on the different periodic backgrounds are given explicitly,including the single-periodic background,the double-periodic background and the plane wave background by selecting different parameters.In addition,the form of the obtained solutions is summarized.展开更多
We investigate a(2 + 1)-dimensional shallow water wave equation and describe its nonlinear dynamical behaviors in physics. Based on the N-soliton solutions, the higher-order fissionable and fusionable waves, fissionab...We investigate a(2 + 1)-dimensional shallow water wave equation and describe its nonlinear dynamical behaviors in physics. Based on the N-soliton solutions, the higher-order fissionable and fusionable waves, fissionable or fusionable waves mixed with soliton molecular and breather waves can be obtained by various constraints of special parameters. At the same time, by the long wave limit method, the interaction waves between fissionable or fusionable waves with higher-order lumps are acquired. Combined with the dynamic figures of the waves, the properties of the solution are deeply studied to reveal the physical significance of the waves.展开更多
In the paper, the homoclinic (hateroclinic) breather limit method (HBLM) is applied to seek rogue wave solution of the Benjamin Ono equation. We find that the rational breather wave solution is just a rogue wave solut...In the paper, the homoclinic (hateroclinic) breather limit method (HBLM) is applied to seek rogue wave solution of the Benjamin Ono equation. We find that the rational breather wave solution is just a rogue wave solution. This result shows that rogue wave can come from the extreme behavior of the breather solitary wave for (1+1)-dimensional nonlinear wave fields.展开更多
We investigate optical superregular breathers in the femtosecond regime under dispersion management in an inho- mogeneous fiber governed by the nonautonomous higher-order nonlinear Schr6dinger equation (NLSE). Exact...We investigate optical superregular breathers in the femtosecond regime under dispersion management in an inho- mogeneous fiber governed by the nonautonomous higher-order nonlinear Schr6dinger equation (NLSE). Exact solutions describing the dynamics of superregular breathers are obtained. Furthermore, we discuss the propagation behaviors of controllable superregular breathers, including stabilization and recurrence in an exponential dispersion fiber and a peri- odic distributed fiber system. Particularly, the nonlinear dynamics of superregular modes evolved from an identical initial small-amplitude modulation is analyzed in detail.展开更多
We investigate some novel localized waves on the plane wave background in the coupled cubic-quintic nonlinear Schrdinger (CCQNLS) equations through the generalized Darboux transformation (DT). A special vector sol...We investigate some novel localized waves on the plane wave background in the coupled cubic-quintic nonlinear Schrdinger (CCQNLS) equations through the generalized Darboux transformation (DT). A special vector solution of the Lax pair of the CCQNLS system is elaborately constructed, based on the vector solution, various types of higher-order localized wave solutions of the CCQNLS system are constructed via the generalized DT. These abundant and novel localized waves constructed in the CCQNLS system include higher-order rogue waves, higher-order rogues interacting with multi-soliton or multi-breather separately. The first-and second-order semi-rational localized waves including several free parameters are mainly discussed:(i) the semi-rational solutions degenerate to the first-and second-order vector rogue wave solutions; (ii) hybrid solutions between a first-order rogue wave and a dark or bright soliton, a second-order rogue wave and two dark or bright solitons; (iii) hybrid solutions between a first-order rogue wave and a breather, a second-order rogue wave and two breathers. Some interesting and appealing dynamic properties of these types of localized waves are demonstrated, for example, these nonlinear waves merge with each other markedly by increasing the absolute value of α. These results further uncover some striking dynamic structures in the CCQNLS system.展开更多
Nonlinearity has a crucial impact on the symmetry properties of dynamical systems. This paper studies a one-dimensional mixed Klein-Gordon/Fermi Pasta-Ulam diatomic chain using the expanded rotating plane-wave approxi...Nonlinearity has a crucial impact on the symmetry properties of dynamical systems. This paper studies a one-dimensional mixed Klein-Gordon/Fermi Pasta-Ulam diatomic chain using the expanded rotating plane-wave approximation and numerical calculations to determine the effect of cubic potentials on the symmetry properties of discrete breathers in this system. The results will be very useful to researchers in the field of numerical calculations on discrete breathers.展开更多
We study the Peregrine rogue waves within the framework of Derivative Nonlinear Schrödinger equation, which is used to describe the propagation of Alfven waves in plasma physics and sub-picosecond or femtosecond ...We study the Peregrine rogue waves within the framework of Derivative Nonlinear Schrödinger equation, which is used to describe the propagation of Alfven waves in plasma physics and sub-picosecond or femtosecond pulses in nonlinear optics. The interaction and degeneration of two soliton-like solutions and its relations for the breather solution have been analyzed. The Peregrine rogue waves have been considered from the two kinds of formation processes: it can be generated through the limitation of the infinitely large period of the breather solutions, and it can be interpreted as the soliton-like solutions with different polarities. As a special example, a special Peregrine rogue wave is generated by a breather solution and phase solution, which is given by the trivial seed (zero solution).展开更多
文摘The(2+1)-dimensional Chaffee–Infante has a wide range of applications in science and engineering,including nonlinear fiber optics,electromagnetic field waves,signal processing through optical fibers,plasma physics,coastal engineering,fluid dynamics and is particularly useful for modeling ion-acoustic waves in plasma and sound waves.In this paper,this equation is investigated and analyzed using two effective schemes.The well-known tanh-coth and sine-cosine function schemes are employed to establish analytical solutions for the equation under consideration.The breather wave solutions are derived using the Cole–Hopf transformation.In addition,by means of new conservation theorem,we construct conservation laws(CLs)for the governing equation by means of Lie–Bäcklund symmetries.The novel characteristics for the(2+1)-dimensional Chaffee–Infante equation obtained in this work can be of great importance in nonlinear sciences and ocean engineering.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12275172 and 11905124)。
文摘This paper studies the(2+1)-dimensional Hirota-Satsuma-Ito equation.Based on an associated Hirota bilinear form,lump-type solution,two types of interaction solutions,and breather wave solution of the(2+1)-dimensional Hirota-Satsuma-Ito equation are obtained,which are all related to the seed solution of the equation.It is interesting that the rogue wave is aroused by the interaction between one-lump soliton and a pair of resonance stripe solitons,and the fusion and fission phenomena are also found in the interaction between lump solitons and one-stripe soliton.Furthermore,the breather wave solution is also obtained by reducing the two-soliton solutions.The trajectory and period of the one-order breather wave are analyzed.The corresponding dynamical characteristics are demonstrated by the graphs.
文摘By employing the Hirota’s bilinear method and different test functions, the breather solutions of HSI equation with different structures are obtained based on symbolic calculation with perturbation parameters. Some new lump solitons are found in the process of studying the degradation behavior of breather solutions. The interaction between lump solution and soliton solution is constructed in the form of lump solution, and the motion trajectory of lump is obtained. In addition, the theorem of lump solitons and N-solitons superposition is given and proved. The superposition formula of lump is derived from the theorem, and its spatial evolution behavior is given.
基金Supported by Chinese Natural Science Foundation under Grant No. 10661002Yunnan Natural Science Foundation under Grant No. 2006A0082M
文摘Exact heteroclinic breather-wave solutions for Davey-Stewartson (DSI, DSII) system with periodic boundary condition are constructed using Hirota's bilinear form method and generalized ansatz method. The heteroclinic structure of wave is investigated.
文摘This study investigates the (3+1)-dimensional soliton equation via the Hirota bilinear approach and symbolic computations. We successfully construct some new lump, lump-kink, breather wave, lump periodic, and some other new interaction solutions. All the reported solutions are verified by inserting them into the original equation with the help of the Wolfram Mathematica package. The solution’s visual characteristics are graphically represented in order to shed more light on the results obtained. The findings obtained are useful in understanding the basic nonlinear fluid dynamic scenarios as well as the dynamics of computational physics and engineering sciences in the related nonlinear higher dimensional wave fields.
文摘The current study employs the novel Hirota bilinear scheme to investigate the nonlinear model.Thus,we acquire some two-wave and breather wave solutions to the governing equation.Breathers are pulsating localized structures that have been used to mimic extreme waves in a variety of nonlinear dispersive media with a narrow banded starting process.Several recent investigations,on the other hand,imply that breathers can survive in more complex habitats,such as random seas,despite the attributed physical restrictions.The authenticity and genuineness of all the acquired solutions agreed with the original equation.In order to shed more light on these novel solutions,we plot the 3-dimensional and contour graphs to the reported solutions with some suitable values.The governing model is also stable because of the idea of linear stability.The study’s findings may help explain the physics behind some of the challenges facing ocean engineers.
基金Project supported by the National Natural Science Foundation of China(Grant No.61774001)the Natural Science Foundation of Hunan Province,China(Grant No.2017JJ2045)
文摘Based on the developed Darboux transformation, we investigate the exact asymmetric solutions of breather and rogue waves in pair-transition-coupled nonlinear Schr?dinger equations. As an example, some types of exact breather solutions are given analytically by adjusting the parameters. Moreover, the interesting fundamental problem is to clarify the formation mechanism of asymmetry breather solutions and how the particle number and energy exchange between the background and soliton ultimately form the breather solutions. Our results also show that the formation mechanism from breather to rogue wave arises from the transformation from the periodic total exchange into the temporal local property.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11705290 and 11305060the China Postdoctoral Science Foundation under Grant No 2016M602252
文摘We derive an N-fold Darboux transformation for the nonlinear Schrdinger equation coupled to a multiple selfinduced transparency system, which is applicable to optical fiber communications in the erbium-doped medium.The N-soliton, N-breather and N th-order rogue wave solutions in the compact determinant representations are derived using the Darboux transformation and limit technique. Dynamics of such solutions from the first-to second-order ones are shown.
基金supported by the National Natural Science Foundation of China under(Grant No.12361052)the Natural Science Foundation of Inner Mongolia Autonomous Region China under(Grant No.2020LH01010,2022ZD05)+1 种基金Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region(Grant No.NMGIRT2414)the Fundamental Research Founds for the Inner Mongolia Normal University(Grant No.2022JBTD007).
文摘In this paper,by using the Darboux transformation(DT)method and the Taylor expansion method,a new nth-order determinant of the hybrid rogue waves and breathers solution on the double-periodic background of the Kundu-DNLS equation is constructed when n is even.Breathers and rogue waves can be obtained from this determinant,respectively.Further to this,the hybrid rogue waves and breathers solutions on the different periodic backgrounds are given explicitly,including the single-periodic background,the double-periodic background and the plane wave background by selecting different parameters.In addition,the form of the obtained solutions is summarized.
基金Project supported by the Excellent Talents Project of Colleges and Universities in Anhui Province of China (Grant No. gxyq ZD2020077)the School-level Scientific Research Projects (Grant No. 2021KYXM08)+1 种基金the National Natural Science Foundation of China (Grant No. 11775121)K.C.Wong Magna Fund in Ningbo University。
文摘We investigate a(2 + 1)-dimensional shallow water wave equation and describe its nonlinear dynamical behaviors in physics. Based on the N-soliton solutions, the higher-order fissionable and fusionable waves, fissionable or fusionable waves mixed with soliton molecular and breather waves can be obtained by various constraints of special parameters. At the same time, by the long wave limit method, the interaction waves between fissionable or fusionable waves with higher-order lumps are acquired. Combined with the dynamic figures of the waves, the properties of the solution are deeply studied to reveal the physical significance of the waves.
文摘In the paper, the homoclinic (hateroclinic) breather limit method (HBLM) is applied to seek rogue wave solution of the Benjamin Ono equation. We find that the rational breather wave solution is just a rogue wave solution. This result shows that rogue wave can come from the extreme behavior of the breather solitary wave for (1+1)-dimensional nonlinear wave fields.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11547302,11705145,and 11434013)
文摘We investigate optical superregular breathers in the femtosecond regime under dispersion management in an inho- mogeneous fiber governed by the nonautonomous higher-order nonlinear Schr6dinger equation (NLSE). Exact solutions describing the dynamics of superregular breathers are obtained. Furthermore, we discuss the propagation behaviors of controllable superregular breathers, including stabilization and recurrence in an exponential dispersion fiber and a peri- odic distributed fiber system. Particularly, the nonlinear dynamics of superregular modes evolved from an identical initial small-amplitude modulation is analyzed in detail.
基金Project supported by the Global Change Research Program of China(Grant No.2015CB953904)the National Natural Science Foundation of China(Grant Nos.11675054 and 11435005)+1 种基金the Shanghai Collaborative Innovation Center of Trustworthy Software for Internet of Things(Grant No.ZF1213)the Natural Science Foundation of Hebei Province,China(Grant No.A2014210140)
文摘We investigate some novel localized waves on the plane wave background in the coupled cubic-quintic nonlinear Schrdinger (CCQNLS) equations through the generalized Darboux transformation (DT). A special vector solution of the Lax pair of the CCQNLS system is elaborately constructed, based on the vector solution, various types of higher-order localized wave solutions of the CCQNLS system are constructed via the generalized DT. These abundant and novel localized waves constructed in the CCQNLS system include higher-order rogue waves, higher-order rogues interacting with multi-soliton or multi-breather separately. The first-and second-order semi-rational localized waves including several free parameters are mainly discussed:(i) the semi-rational solutions degenerate to the first-and second-order vector rogue wave solutions; (ii) hybrid solutions between a first-order rogue wave and a dark or bright soliton, a second-order rogue wave and two dark or bright solitons; (iii) hybrid solutions between a first-order rogue wave and a breather, a second-order rogue wave and two breathers. Some interesting and appealing dynamic properties of these types of localized waves are demonstrated, for example, these nonlinear waves merge with each other markedly by increasing the absolute value of α. These results further uncover some striking dynamic structures in the CCQNLS system.
基金Project supported by the National Natural Science Foundation of China (Grant No.10574011)the Foundation for Innovative Research Groups Foundation of Beijing Normal University
文摘Nonlinearity has a crucial impact on the symmetry properties of dynamical systems. This paper studies a one-dimensional mixed Klein-Gordon/Fermi Pasta-Ulam diatomic chain using the expanded rotating plane-wave approximation and numerical calculations to determine the effect of cubic potentials on the symmetry properties of discrete breathers in this system. The results will be very useful to researchers in the field of numerical calculations on discrete breathers.
文摘We study the Peregrine rogue waves within the framework of Derivative Nonlinear Schrödinger equation, which is used to describe the propagation of Alfven waves in plasma physics and sub-picosecond or femtosecond pulses in nonlinear optics. The interaction and degeneration of two soliton-like solutions and its relations for the breather solution have been analyzed. The Peregrine rogue waves have been considered from the two kinds of formation processes: it can be generated through the limitation of the infinitely large period of the breather solutions, and it can be interpreted as the soliton-like solutions with different polarities. As a special example, a special Peregrine rogue wave is generated by a breather solution and phase solution, which is given by the trivial seed (zero solution).