期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Studies on Cotton Breeding Resistant to Fusarium and Verticillium wilt Diseases
1
作者 YE Peng-sheng,ZENG Hua-lan,WEI Shu-gu,ZHANG Yu,LI Qiong-ying(Industrial Crops Research Institute,Sichuan Academy of Agricultural Science,Jianyang,Sichuan Province 641400,China) 《棉花学报》 CSCD 北大核心 2008年第S1期101-,共1页
Both Fusarium and Verticillium wilts are important soil-borne diseases,which can not be effectively controlled by chemical fungicides.The two diseases,especially Verticillium wilt,have
关键词 Studies on Cotton breeding Resistant to Fusarium and Verticillium wilt diseases HIGH THAN
下载PDF
Immunogenomics for identification of disease resistance genes in pigs: a review focusing on Gram-negative bacilli
2
作者 Shuhong Zhao Mengjin Zhu Hongbo Chen 《Journal of Animal Science and Biotechnology》 SCIE CAS 2013年第1期5-17,共13页
Over the past years, infectious disease has caused enormous economic loss in pig industry. Among the pathogens, gram negative bacteria not only cause inflammation, but also cause different diseases and make the pigs m... Over the past years, infectious disease has caused enormous economic loss in pig industry. Among the pathogens, gram negative bacteria not only cause inflammation, but also cause different diseases and make the pigs more susceptible to virus infection. Vaccination, medication and elimination of sick pigs are major strategies of controlling disease. Genetic methods, such as selection of disease resistance in the pig, have not been widely used. Recently, the completion of the porcine whole genome sequencing has provided powerful tools to identify the genome regions that harboring genes controlling disease or immunity. Immunogenornics, which combines DNA variations, transcriptorne, immune response, and QTL mapping data to illustrate the interactions between pathogen and host immune system, will be an effective genomics tool for identification of disease resistance genes in pigs. These genes will be potential targets for disease resistance in breeding programs. This paper reviewed the progress of disease resistance study in the pig focusing on Gram-negative bacilli. Major porcine Gram-negative bacilli and diseases, suggested candidate genes/pathways against porcine Gram-negative bacilli, and distributions of QTLs for immune capacity on pig chromosomes were summarized. Some tools for immunogenomics research were described. We conclude that integration of sequencing, whole genome associations, functional genomics studies, and immune response information is necessary to illustrate molecular mechanisms and key genes in disease resistance. 展开更多
关键词 PIG Gram-negative bacteria Immunogenomics disease resistance breeding
下载PDF
Advances in Research on Rape Sclerotia and Resistance Breeding
3
作者 Yan YUAN Suping GUO +1 位作者 Guanghuan YANG Ba DAN 《Asian Agricultural Research》 2020年第7期55-60,共6页
Rapeseed is an important oil crop with high economic value.It can be used not only as edible oil and livestock feed,but also in medicine,industry and tourism.Sclerotium sclerotiorum is a necrotrophic fungal pathogen t... Rapeseed is an important oil crop with high economic value.It can be used not only as edible oil and livestock feed,but also in medicine,industry and tourism.Sclerotium sclerotiorum is a necrotrophic fungal pathogen that harms the yield and quality of rape.This article mainly summarizes the research status of S.sclerotiorum from three aspects:the biological characteristics,infection mode,process and disease resistance breeding of S.sclerotiorum,and summarizes the future research directions of antibacterial sclerotium on rape,to provide reference for future research on sclerotinia. 展开更多
关键词 RAPE Infection with sclerotium disease resistance breeding
下载PDF
Pathogen-informed breeding for crop disease resistance 被引量:2
4
作者 Qi Li Bi Wang +1 位作者 Jinping Yu Daolong Dou 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2021年第2期305-311,共7页
The development of durable and broad-spectrum resistance is an economical and eco-friendly approach to control crop diseases for sustainable agricultural production. Emerging knowledge of the molecular basis of pathog... The development of durable and broad-spectrum resistance is an economical and eco-friendly approach to control crop diseases for sustainable agricultural production. Emerging knowledge of the molecular basis of pathogenesis and plant–pathogen interactions has contributed to the development of novel pathogen-informed breeding strategies beyond the limits imposed by conventional breeding. Here,we review the current status of pathogen-assisted resistance-related gene cloning. We also describe how pathogen effector proteins can be used to identify resistance resources and to inform cultivar deployment. Finally, we summarize the main approaches for pathogen-directed plant improvement,including transgenesis and genome editing. Thus, we describe the emerging role of pathogen-related studies in the breeding of disease-resistant varieties, and propose innovative pathogen-informed strategies for future applications. 展开更多
关键词 disease resistance breeding effector protein plant immune system plant pathogens
原文传递
Utilization Situation and Prospect of Gene xa5 Against Pathotype Ⅴ of Rice Bacterial Blight
5
作者 Taihui CHENG Shen CHEN +4 位作者 Jianyuan YANG Xiaoyuan ZHU Shengyuan WU Qijin HONG Liexian ZENG 《Agricultural Biotechnology》 CAS 2020年第6期17-21,共5页
In recent years,the strong virulence pathotype Ⅴ of rice bacterial blight grew up quickly in Southern China,which has become a major population and spread to the rice regions of Jiangsu and Zhejiang provinces in Sout... In recent years,the strong virulence pathotype Ⅴ of rice bacterial blight grew up quickly in Southern China,which has become a major population and spread to the rice regions of Jiangsu and Zhejiang provinces in Southern China.Since pathotype Ⅴ caused serious bacterial blight disease in rice production regions,it is urgent to breed and promote resistant varieties against pathotype Ⅴ.The most economic and effective measure to control rice bacterial blight is to breed resistant cultivars for widely planting using resistance genes.The Institute of Plant Protection,Guangdong Academy of Agricultural Sciences,and Agricultural Science Research Institute of Panyu District of Guangzhou used IRBB5 carrying the recessive xa5 gene from IRRI that is resistant to pathotype Ⅴ to breed resistant varieties with rice blast resistance source,through hybridization,multiple cross,pedigree selection and synchronous resistance evaluation.We successfully bred series of new resistant rice varieties such as Baijiangzhan,Baijingzhan and Baisizhan,which showed resistance to strong virulence pathotype Ⅴ(grade 1-3)of bacterial blight and rice blast(mediate to high resistance),good grain quality(level 3 of rice quality of Guangdong),and yield equivalent to major cultivars(compared with region trial control cultivars of Guangdong).These new resistant varieties were promoted and planted in the strong virulence pathotype Ⅴ region along the west coast of Guangdong,which showed favorable superiority and wide application prospect in controlling rice bacterial blight with resistance varieties. 展开更多
关键词 RICE xa5 gene PathotypeⅤof rice bacterial blight breeding for disease resistance
下载PDF
microRNA-mediated R gene regulation: molecular scabbards for double-edged swords 被引量:10
6
作者 Yingtian Deng Minglei Liu +1 位作者 Xiaofei Li Feng Li 《Science China(Life Sciences)》 SCIE CAS CSCD 2018年第2期138-147,共10页
Plant resistance(R) proteins are immune receptors that recognize pathogen effectors and trigger rapid defense responses, namely effector-triggered immunity. R protein-mediated pathogen resistance is usually race speci... Plant resistance(R) proteins are immune receptors that recognize pathogen effectors and trigger rapid defense responses, namely effector-triggered immunity. R protein-mediated pathogen resistance is usually race specific. During plant-pathogen coevolution,plant genomes accumulated large numbers of R genes. Even though plant R genes provide important natural resources for breeding disease-resistant crops, their presence in the plant genome comes at a cost. Misregulation of R genes leads to developmental defects, such as stunted growth and reduced fertility. In the past decade, many microRNAs(miRNAs) have been identified to target various R genes in plant genomes. miRNAs reduce R gene levels under normal conditions and allow induction of R gene expression under various stresses. For these reasons, we consider R genes to be double-edged "swords" and miRNAs as molecular "scabbards". In the present review, we summarize the contributions and potential problems of these "swords" and discuss the features and production of the "scabbards", as well as the mechanisms used to pull the "sword" from the "scabbard"when needed. 展开更多
关键词 NLR innate immunity siRNA miRNA crop disease breeding
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部