期刊文献+
共找到438篇文章
< 1 2 22 >
每页显示 20 50 100
Effects of Breviscapine on the Changes in Antioxidant Enzyme Activity Induced by Cerebral Ischemia-reperfusion in Rats 被引量:5
1
作者 陈小夏 何冰 《Journal of Chinese Pharmaceutical Sciences》 CAS 1998年第2期35-37,共3页
本文研究了灯盏花素对大鼠脑缺血再灌注引起抗氧化酶活性改变的影响,结果表明,灯盏花素明显提高脑缺血再灌注引起的脑组织超氧歧化酶(SOD)、谷胱甘肽过氧化物酶(GSHperoxidase)和过氧化氢酶(Catalase... 本文研究了灯盏花素对大鼠脑缺血再灌注引起抗氧化酶活性改变的影响,结果表明,灯盏花素明显提高脑缺血再灌注引起的脑组织超氧歧化酶(SOD)、谷胱甘肽过氧化物酶(GSHperoxidase)和过氧化氢酶(Catalase)的活性,减少脑组织丙二醛(MDA)含量。这些作用有利于减轻脑缺血再灌注损伤。 展开更多
关键词 灯盏花素 脑缺血再灌注 超氧歧化酶 谷胱甘肽过氧化物酶 过氧化氢酶 丙二醛
全文增补中
Effects of L-Tetrahydropalmatine on the Expressions of bcl-2 and bax in Rat after Acute Global Cerebral Ischemia and Reperfusion 被引量:4
2
作者 刘彬 杨光田 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2004年第5期445-448,共4页
To investigate the effects of L-Tetrahydropalmatine (L-THP) on the expressions of bcl-2, bax and neuronal apoptosis after cerebral ischemia and reperfusion, 60 Wistars rats were randomly divided into 3 groups: sham-op... To investigate the effects of L-Tetrahydropalmatine (L-THP) on the expressions of bcl-2, bax and neuronal apoptosis after cerebral ischemia and reperfusion, 60 Wistars rats were randomly divided into 3 groups: sham-operation group (group S, n = 20), ischemic-reperfusion group treated with saline (group I, n=20) and ischemia-reperfusion group treated with L-THP (group T, n=20) .The rat model of global cerebral ischemia and reperfusion was induced by Pulsinelli's four-vessel occlusion method. The expression of bcl-2 and bax mRNA was detected by in situ hybridization and reverse transcriptional polymerase chain reaction (RT-PCR). The number of apoptotic neurons was examined by terminal deoxynucleotidyl-transferase (TdT)-mediated dUTP nick end-labeling (TUNEL) method. Compared with group S, the expression of bcl-2 and bax mRNA in group I was increased significantly (P<0.01), and the number of apoptotic neurons increased either (P< 0.01). After L-THP treatment, the expression of bcl-2 mRNA was up-regulated (P<0.01) and that of bax mRNA was down-regulated (P<0.01); the number of apoptotic neurons was decreased (P<0.01). Our results indicated that bcl-2 may suppress apoptosis and bax promote apoptosis after cerebral ischemia and reperfusion. L-THP could ameliorate cerebral ischemia and reperfusion damage by reducing the apoptosis through regulating bcl-2 and bax. 展开更多
关键词 cerebral ischemia and reperfusion neuronal apoptosis expression of bcl-2 and bax L-TETRAHYDROPALMATINE
下载PDF
A matrix metalloproteinase-responsive hydrogel system controls angiogenic peptide release for repair of cerebral ischemia/reperfusion injury
3
作者 Qi Liu Jianye Xie +5 位作者 Runxue Zhou Jin Deng Weihong Nie Shuwei Sun Haiping Wang Chunying Shi 《Neural Regeneration Research》 SCIE CAS 2025年第2期503-517,共15页
Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug deliv... Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug delivery often results in a burst release of the drug,leading to transient retention(inefficacy)and undesirable diffusion(toxicity)in vivo.Therefore,a drug delivery system that responds to changes in the microenvironment of tissue regeneration and controls vascular endothelial growth factor release is crucial to improve the treatment of ischemic stroke.Matrix metalloproteinase-2(MMP-2)is gradually upregulated after cerebral ischemia.Herein,vascular endothelial growth factor mimic peptide QK was self-assembled with MMP-2-cleaved peptide PLGLAG(TIMP)and customizable peptide amphiphilic(PA)molecules to construct nanofiber hydrogel PA-TIMP-QK.PA-TIMP-QK was found to control the delivery of QK by MMP-2 upregulation after cerebral ischemia/reperfusion and had a similar biological activity with vascular endothelial growth factor in vitro.The results indicated that PA-TIMP-QK promoted neuronal survival,restored local blood circulation,reduced blood-brain barrier permeability,and restored motor function.These findings suggest that the self-assembling nanofiber hydrogel PA-TIMP-QK may provide an intelligent drug delivery system that responds to the microenvironment and promotes regeneration and repair after cerebral ischemia/reperfusion injury. 展开更多
关键词 angiogenesis biomaterial blood-brain barrier cerebral ischemia/reperfusion injury control release drug delivery inflammation QK peptides matrix metalloproteinase-2 NEUROPROTECTION self-assembling nanofiber hydrogel
下载PDF
Endoplasmic reticulum stress and autophagy in cerebral ischemia/reperfusion injury:PERK as a potential target for intervention
4
作者 Ju Zheng Yixin Li +8 位作者 Ting Zhang Yanlin Fu Peiyan Long Xiao Gao Zhengwei Wang Zhizhong Guan Xiaolan Qi Wei Hong Yan Xiao 《Neural Regeneration Research》 SCIE CAS 2025年第5期1455-1466,共12页
Several studies have shown that activation of unfolded protein response and endoplasmic reticulum(ER)stress plays a crucial role in severe cerebral ischemia/reperfusion injury.Autophagy occurs within hours after cereb... Several studies have shown that activation of unfolded protein response and endoplasmic reticulum(ER)stress plays a crucial role in severe cerebral ischemia/reperfusion injury.Autophagy occurs within hours after cerebral ischemia,but the relationship between ER stress and autophagy remains unclear.In this study,we established experimental models using oxygen-glucose deprivation/reoxygenation in PC12 cells and primary neurons to simulate cerebral ischemia/reperfusion injury.We found that prolongation of oxygen-glucose deprivation activated the ER stress pathway protein kinase-like endoplasmic reticulum kinase(PERK)/eukaryotic translation initiation factor 2 subunit alpha(e IF2α)-activating transcription factor 4(ATF4)-C/EBP homologous protein(CHOP),increased neuronal apoptosis,and induced autophagy.Furthermore,inhibition of ER stress using inhibitors or by si RNA knockdown of the PERK gene significantly attenuated excessive autophagy and neuronal apoptosis,indicating an interaction between autophagy and ER stress and suggesting PERK as an essential target for regulating autophagy.Blocking autophagy with chloroquine exacerbated ER stress-induced apoptosis,indicating that normal levels of autophagy play a protective role in neuronal injury following cerebral ischemia/reperfusion injury.Findings from this study indicate that cerebral ischemia/reperfusion injury can trigger neuronal ER stress and promote autophagy,and suggest that PERK is a possible target for inhibiting excessive autophagy in cerebral ischemia/reperfusion injury. 展开更多
关键词 apoptosis ATF4 AUTOPHAGY C/EBP homologous protein cerebral ischemia/reperfusion injury EIF2Α endoplasmic reticulum stress PERK
下载PDF
Upregulation of CDGSH iron sulfur domain 2 attenuates cerebral ischemia/reperfusion injury
5
作者 Miao Hu Jie Huang +6 位作者 Lei Chen Xiao-Rong Sun Zi-Meng Yao Xu-Hui Tong Wen-Jing Jin Yu-Xin Zhang Shu-Ying Dong 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第7期1512-1520,共9页
CDGSH iron sulfur domain 2 can inhibit ferroptosis,which has been associated with cerebral ischemia/reperfusion,in individuals with head and neck cancer.Therefore,CDGSH iron sulfur domain 2 may be implicated in cerebr... CDGSH iron sulfur domain 2 can inhibit ferroptosis,which has been associated with cerebral ischemia/reperfusion,in individuals with head and neck cancer.Therefore,CDGSH iron sulfur domain 2 may be implicated in cerebral ischemia/reperfusion injury.To validate this hypothesis in the present study,we established mouse models of occlusion of the middle cerebral artery and HT22 cell models of oxygen-glucose deprivation and reoxygenation to mimic cerebral ischemia/reperfusion injury in vivo and in vitro,respectively.We found remarkably decreased CDGSH iron sulfur domain 2 expression in the mouse brain tissue and HT22 cells.When we used adeno-associated virus and plasmid to up-regulate CDGSH iron sulfur domain 2 expression in the brain tissue and HT22 cell models separately,mouse neurological dysfunction was greatly improved;the cerebral infarct volume was reduced;the survival rate of HT22 cells was increased;HT22 cell injury was alleviated;the expression of ferroptosis-related glutathione peroxidase 4,cystine-glutamate antiporter,and glutathione was increased;the levels of malondialdehyde,iron ions,and the expression of transferrin receptor 1 were decreased;and the expression of nuclear-factor E2-related factor 2/heme oxygenase 1 was increased.Inhibition of CDGSH iron sulfur domain 2 upregulation via the nuclear-factor E2-related factor 2 inhibitor ML385 in oxygen-glucose deprived and reoxygenated HT22 cells blocked the neuroprotective effects of CDGSH iron sulfur domain 2 up-regulation and the activation of the nuclear-factor E2-related factor 2/heme oxygenase 1 pathway.Our data indicate that the up-regulation of CDGSH iron sulfur domain 2 can attenuate cerebral ischemia/reperfusion injury,thus providing theoretical support from the perspectives of cytology and experimental zoology for the use of this protein as a therapeutic target in patients with cerebral ischemia/reperfusion injury. 展开更多
关键词 cerebral ischemia/reperfusion injury CDGSH iron sulfur domain 2 ferroptosis glutathione peroxidase 4 heme oxygenase 1 HT22 nuclear-factor E2-related factor 2 oxygen-glucose deprivation/reoxygenation injury stroke transferrin receptor 1
下载PDF
Effects of anisodamine on altered [Ca^(2+)]i and cerebral cortex ultrastructure following acute cerebral ischemia/reperfusion injury in rabbits 被引量:1
6
作者 Daixing Zhou Chengye Zhan Puzhen Deng 《Neural Regeneration Research》 SCIE CAS CSCD 2008年第10期1095-1098,共4页
BACKGROUND: Calcium ion (Ca^2+) overload plays an important role in cerebral ischemia/reperfusion injury. Anisodamine, a type of alkaloid, can protect the myocardium from ischemia and reperfusion injury by inhibit... BACKGROUND: Calcium ion (Ca^2+) overload plays an important role in cerebral ischemia/reperfusion injury. Anisodamine, a type of alkaloid, can protect the myocardium from ischemia and reperfusion injury by inhibiting intracellular calcium [Ca^2+]i overload. OBJECTIVE: To investigate effects of anisodamine on [Ca^2+]i concentration and cortex ultrastructure following acute cerebral ischemia/reperfusion in rabbits. DESIGN, TIME AND SETTING: Randomized and controlled trial was performed at the Department of Emergency, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology from September to December 2006. MATERIALS: Forty healthy rabbits were used to establish models of acute cerebral ischemia/reperfusion. Anisodamine was provided by Lianyungang Dongfeng Pharmaceutical Factory; Fura-2 was purchased from Nanjing Jiancheng Bioengineering Institute; dual-wave length fluorescent spectrophotometry system and DM-300 software were provided by Bio-Rad, USA; OPTON-EM10C transmission electron microscope was product of Siemens, Germany. METHODS: Forty rabbits were randomly divided into the following groups: sham operation, ischemia, ischemia/reperfusion, and anisodamine, with ten rabbits in each group. Models of complete cerebral ischemia injury were established. In addition, blood was collected from the femoral artery of rats in the ischemia/reperfusion and anisodamine groups to induce hypotension and establish repeffusion injury models. The bilateral common carotid artery clamp was removed from the anisodamine group 20 minutes after ischemia, and anisodamine (10 mg/kg body mass) was injected via the femoral vein. Rabbits in the sham operation group underwent only venous cannulation. MAIN OUTCOME MEASURES: [Ca^2+]i concentration was determined using a dual-wave length fluorescent spectrophotometry system, and cortical ultrastructure was observed following uranyl-lead citrate staining. RESULTS: The levels of [Ca^2+]i in the ischemia and ischemia/reperfusion groups were significantly increased, compared with the sham operation group (P 〈 0.01), and the levels of [Ca^2+]i in the anisodamine group were remarkably less than the ischemia and ischemia/reperfusion groups (P 〈 0.01). Ultrastructural damage to the cortex was greatly aggravated with increasing levels of [Ca^2+]i. In the ischemia group, cortical neuronal membranes were fragmentally damaged, including the mitochoudria and endoplasmic reticulum, as well as neufite swelling, and slight chromatin margination. In the ischemia/reperfusion group, the cellular membrane was ruptured with aggravated mitochondrial swelling, increased chromatin margination, obscure neufite structure, and the disappearance of endoplasmic reticulum. However, in the anisodamine group, cellular damage was obviously alleviated. The appearance and structure of cortical neurons was relatively normal, with intact cells. There was slight swelling of the mitochondria and endoplasmic reticulum, as well as mild chromatin margination. CONCLUSION: Cerebral tissue injury was related to increased [Ca^2+]i levels following ischemia/ reperfusion. Anisodamine exhibited a protective role on acute cerebral ischemia/reperfusion injury by inhibiting the increase in [Ca^2+]i levels. 展开更多
关键词 ANISODAMINE [Ca^2+]i cerebral ischemia/reperfusion ULTRASTRUCTURE
下载PDF
Effect of ephrin-B2 on the expressions of angiopoietin-1 and-2 after focal cerebral ischemia/reperfusion 被引量:6
7
作者 Hui Xiao Qing Huang +2 位作者 Jia-qi Wang Qing-qing Deng Wen-ping Gu 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第11期1784-1789,共6页
Ephrin-B2 has been shown to participate in angiogenesis, but the underlying mechanisms involved remain unclear. In this study, a rat model of local cerebral ischemia was prepared by focal middle cerebral artery occlus... Ephrin-B2 has been shown to participate in angiogenesis, but the underlying mechanisms involved remain unclear. In this study, a rat model of local cerebral ischemia was prepared by focal middle cerebral artery occlusion, followed by 24-hour reperfusion. Then, ephrin-B2 protein was administered intracerebroventricularly for 3 consecutive days via a micro-osmotic pump. Western blot assay and quantitative real-time reverse transcription PCR demonstrated the expression levels of angiopoietin-1 (Ang-1) mRNA and protein in the penumbra cortex of the ephrin-B2 treated group were decreased at day 4 after reperfusion, and increased at day 28, while the expression levels of angiopoietin-2 (Ang-2) were highly up-regulated at all time points tested. Double immunofluorescent staining indicated that Ang-1 and Ang-2 were both expressed in vascular endothelial cells positive for CD31. These findings indicate that ephrin-B2 influences the expressions of Ang-1 and Ang-2 during angiogenesis following transient focal cerebral ischemia. 展开更多
关键词 nerve regeneration focal cerebral ischemia/reperfusion ephrin-B2 ANGIOGENESIS ANGIOPOIETIN-1 ANGIOPOIETIN-2 NEUROPROTECTION
下载PDF
Inhibition of cerebral ischemia/reperfusion injuryinduced apoptosis:nicotiflorin and JAK2/STAT3 pathway 被引量:39
8
作者 Guang-qiang Hu Xi Du +3 位作者 Yong-jie Li Xiao-qing Gao Bi-qiong Chen Lu Yu 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第1期96-102,共7页
Nicotiflorin is a flavonoid extracted from Carthamus tinctorius.Previous studies have shown its cerebral protective effect,but the mechanism is undefined.In this study,we aimed to determine whether nicotiflorin protec... Nicotiflorin is a flavonoid extracted from Carthamus tinctorius.Previous studies have shown its cerebral protective effect,but the mechanism is undefined.In this study,we aimed to determine whether nicotiflorin protects against cerebral ischemia/reperfusion injury-induced apoptosis through the JAK2/STAT3 pathway.The cerebral ischemia/reperfusion injury model was established by middle cerebral artery occlusion/reperfusion.Nicotiflorin(10 mg/kg) was administered by tail vein injection.Cell apoptosis in the ischemic cerebral cortex was examined by hematoxylin-eosin staining and terminal deoxynucleotidyl transferase d UTP nick end labeling assay.Bcl-2 and Bax expression levels in ischemic cerebral cortex were examined by immunohistochemial staining.Additionally,p-JAK2,p-STAT3,Bcl-2,Bax,and caspase-3 levels in ischemic cerebral cortex were examined by western blot assay.Nicotiflorin altered the shape and structure of injured neurons,decreased the number of apoptotic cells,down-regulates expression of p-JAK2,p-STAT3,caspase-3,and Bax,decreased Bax immunoredactivity,and increased Bcl-2 protein expression and immunoreactivity.These results suggest that nicotiflorin protects against cerebral ischemia/reperfusion injury-induced apoptosis via the JAK2/STAT3 pathway. 展开更多
关键词 nerve regeneration brain injury nicotiflorin ischemic stroke cerebral ischemia/reperfusion injury treatment cell apoptosis terminal deoxynucleotidyl transferase dUTP nick end labeling JAK2/STAT3 pathway Bcl-2 Bax caspase-3 neural regeneration
下载PDF
DNA hypomethylation promotes learning and memory recovery in a rat model of cerebral ischemia/reperfusion injury
9
作者 Guang Shi Juan Feng +1 位作者 Ling-Yan Jian Xin-Yu Fan 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第4期863-868,共6页
Cerebral ischemia/reperfusion injury impairs learning and memory in patients.Studies have shown that synaptic function is involved in the formation and development of memory,and that DNA methylation plays a key role i... Cerebral ischemia/reperfusion injury impairs learning and memory in patients.Studies have shown that synaptic function is involved in the formation and development of memory,and that DNA methylation plays a key role in the regulation of learning and memory.To investigate the role of DNA hypomethylation in cerebral ischemia/reperfusion injury,in this study,we established a rat model of cerebral ischemia/reperfusion injury by occlusion of the middle cerebral artery and then treated the rats with intraperitoneal 5-aza-2′-deoxycytidine,an inhibitor of DNA methylation.Our results showed that 5-aza-2′-deoxycytidine markedly improved the neurological function,and cognitive,social and spatial memory abilities,and dose-dependently increased the synaptic density and the expression of SYP and SHANK2 proteins in the hippocampus in a dose-dependent manner in rats with cerebral ischemia/reperfusion injury.The effects of 5-aza-2′-deoxycytidine were closely related to its reduction of genomic DNA methylation and DNA methylation at specific sites of the Syp and Shank2 genes in rats with cerebral ischemia/reperfusion injury.These findings suggest that inhibition of DNA methylation by 5-aza-2′-deoxycytidine promotes the recovery of learning and memory impairment in a rat model of cerebral ischemia/reperfusion injury.These results provide theoretical evidence for stroke treatment using epigenetic methods. 展开更多
关键词 cognitive memory DNA methylation DNMT1 hippocampus ischemia/reperfusion social memory spatial memory TET1 transient middle cerebral artery occlusion 5-aza-2′-deoxycytidine
下载PDF
Time-dependent changes of glial fibriliary acidic protein and cytosolic phospholipase A2 in hippocampal area of focal cerebral ischemia/reperfusion in rats
10
作者 Qingzhou Cheng Xingui Ming 《Neural Regeneration Research》 SCIE CAS CSCD 2006年第4期321-324,共4页
BACKGROUND: Interaction between astrocyte and neuron may two-dimensionally influence on ischemic injury; however, glial fibriliary acidic protein (GFAP) and cytosolic phospholipase A2 (cPLA2) are both important m... BACKGROUND: Interaction between astrocyte and neuron may two-dimensionally influence on ischemic injury; however, glial fibriliary acidic protein (GFAP) and cytosolic phospholipase A2 (cPLA2) are both important markers to reflect changes of astrocyte and neuron after cerebral ischemia, respectively. OBJECTIVE: To observe the changes of GFAP and positive cPLA2 cells in hippocampal area of model rats with focal cerebral ischemia in various phases of cerebral ischemia/reperfusion. DESIGN : Randomized contrast observation SETTING: Department of Basic Medical Science of Human Anatomy and Histology & Embryology, Medical College of Wuhan Polytechnic University; Faculty Medical College of Wuhan University. MATERIALS: The experiment was carried out in the Department of Basic Medical Science, Medical College of Wuhan Industry College from May to June 2004. A total of 28 healthy SD rats of either gender and weighing 200-250 g were provided by Animal Department of Medical College of Jianghan University. METHODS: All 28 rats were randomly divided into 7 groups, including sham operation group, 2-, 6-, 12-, 24- and 48-reperfusion groups, and triphenyltetrazolium chloride (TTC) group, with 4 in each group. Two hours after ischemia, ischemia/reperfusion models were established in left middle cerebral artery (MCA); common carotid artery was ligated and line cork was inserted into it with the depth of (1.8±0.5) cm. Rats in sham operation group were inserted with the depth of 1.0 cm, and other operations were as the same as those in 2-hour ischemia/reperfusion groups. Models in TTC group were established as the same as those in 2-hour ischemia/24-hour reperfusion group, and they were used to evaluate the therapeutic effect. Changes of GFAP and cPLA2 in hippocampal area in various phases were detected with immunohisto- chemical method. MAIN OUTCOME MEASURES : Changes of GFAP and positive cPLA2 cells in hippocampal area of rats with focal cerebral ischemia in various phases of ischemia/reperfusion. RESULTS: All 28 rats were involved in the final analysis without any loss. (1) Animal models successfully showed the effect of focal cerebral ischemia. (2) Changes of GFAP and cPLA2 in hippocampal area in various phases: Two hours after ischemia/reperfusion, changes of GFAP and cPLA2 were increased gradually, reached at peak at 24 hours, and decreased gradually. CONCLUSION : Courses of GFAP and cPLA2 are changed at the onset of focal cerebral ischemia, and this suggests that both of them participate in injury or protection of brain tissue of focal cerebral ischemia. 展开更多
关键词 GFAP Time-dependent changes of glial fibriliary acidic protein and cytosolic phospholipase A2 in hippocampal area of focal cerebral ischemia/reperfusion in rats area
下载PDF
Protective effects of imperatorin against cerebral ischemia/reperfusion-induced oxidative stress through Nrf2 signaling pathway in rats 被引量:2
11
作者 Wei HE Wei-wei CHEN +2 位作者 Xian-hua HUANG Yu-mei ZHOU Fang LIAO 《中国药理学与毒理学杂志》 CAS CSCD 北大核心 2017年第10期988-988,共1页
OBJECTIVE To investigates the effects of imperatorin on the oxidative stress in the cerebral cortex and hippocampus after focal cerebral ischemia/reperfusion injury.METHODS Transient focal cerebral ischemia/reperfusio... OBJECTIVE To investigates the effects of imperatorin on the oxidative stress in the cerebral cortex and hippocampus after focal cerebral ischemia/reperfusion injury.METHODS Transient focal cerebral ischemia/reperfusion model in male Sprague-Dawley rats was induced by 2 h middle cerebral artery occlusion followed by 24 h reperfusion.Imperatorin(1.25 and 2.5 mg·kg-1)or vehicle were administered intraperitoneally at 1,5 and 9 h after the onset of ischemia.At 24 h after reperfusion,the biomarkers of oxidative stress such as the levels of reactive oxygen species(ROS),lipid peroxidation products malondialdehyde(MDA),nitric oxide(NO)and total antioxidant capacity(T-AOC),the activities of inducible nitric oxide synthase(iN OS),superoxide dismutase(SOD)and catalase(CAT)in the cerebral cortex and hippocampus were observed.We also assessed the nuclear factor erythroid 2-related factor 2(Nrf2),heme oxygenase-1(HO-1),and the NAD(P)H-quinone oxidoreductase 1(NQO-1)protein expression by Western blot.RESULTS As compared to vehicle-treated animals,imperatorin treatment significantly reduced the ROS,MDA,NO levels and i NOS activity,increased T-AOC and the activities of SOD and CAT.Furthermore,imperatorin treatment also significantly induced the nuclear translocation of Nrf2,enhanced the protein expression of HO-1 and NQO-1 in the cerebral cortex and hippocampus.CONCLUSION Our findings indicate that imperatorin can protect the brain against the excessive oxidative stress induced by cerebral ischemia/reperfusion through activation of Nrf2 signaling pathway. 展开更多
关键词 IMPERATORIN cerebral ischemia/reperfusion reactive oxygen species nuclear factor erythroid 2-related factor 2
下载PDF
Angiopoietin-1 mRNA and Bcl-2 expression following estradiol treatment in ovariectomized rats with focal cerebral ischemia/reperfusion injury
12
作者 Rong Gu Minghua Liu +2 位作者 Yonghong Wang Yuanda Zhou Haixia He 《Neural Regeneration Research》 SCIE CAS CSCD 2009年第10期780-785,共6页
BACKGROUND: Estrogen has been clinically demonstrated to attenuate ischemic brain injury. However, the precise mechanisms remain controversial. OBJECTIVE: To investigate the effects of estradiol on angiopoietin-1 mR... BACKGROUND: Estrogen has been clinically demonstrated to attenuate ischemic brain injury. However, the precise mechanisms remain controversial. OBJECTIVE: To investigate the effects of estradiol on angiopoietin-1 mRNA and Bcl-2 expression, as well as apoptosis and cerebral blood flow, in ovadectomized rats with focal cerebral ischemia following reperfusion. DESIGN, TIME AND SETTING: Randomized, controlled, animal experiment. The study was performed at the Central Laboratory, Chongqing Medical University from September to December 2005. MATERIALS: Estradiol benzoate was purchased from Shanghai Ninth Pharmaceutical Factory; corn oil was purchased from Walmart Supercenter; TUNEL kit, rabbit anti-rat Bcl-2 polyclonal antibody, and biotin-labeled goat anti-rabbit antibody were purchased from Wuhan Boster, China. METHODS: Healthy, female, 6-month-old Wistar rats-wild-type and estrogen alpha receptor gene knockout (ERKO)-were randomly divided into estradiol and control groups with 25 animals in each group. The rats were intramuscularly injected with estradiol benzoate (100 μg/kg per day) at 30 days following bilateral ovariectomy or corn oil (1 mL/kg per day) for seven consecutive days. Following administration, cerebral ischemia/reperfusion models were established using the right middle cerebral artery occlusion (MCAO) method. After 30 minutes of MCAO, estradiol and control groups were separately injected with estradiol benzoate and corn oil with the above-mentioned doses. MAIN OUTCOME MEASURES: Cell apoptosis was determined by TUNEL; angiopoietin-1 mRNA and Bcl-2 gene expression was determined, respectively, by immunohistochemical staining and RT-PCR. In addition, changes in cerebral blood flow were measured by laser Doppler flowmetry. RESULTS: Changes in angiopoietin-1 mRNA and cerebral blood flow in estradiol-treated, wild-type, MCAO rats following ischemia/reperfusion were greater than in control rats (P 〈 0.01 or 0.05). However, no significant difference was observed between estradiol-treated ERKO MCAO rats and control rats. In addition, estradiol-treated wild-type and ERKO MCAO rats exhibited significantly increased Bcl-2 expression (P 〈 0.05) and decreased number of apoptotic cells in brain tissues compared with control groups (P 〈 0.05). CONCLUSION: Estradiol upregulated angiopoietin-1 mRNA and Bcl-2 expression, suggesting that estradiol might be involved in protective mechanisms of cerebral ischemia/reperfusion injury. 展开更多
关键词 ESTRADIOL ANGIOPOIETIN apoptosis BCL-2 cerebral ischemia/reperfusion
下载PDF
β-arrestin 2 negatively regulates NOD2 mediated inflammatory signaling through the association with TRAF6 in cerebral ischemia-reperfusion injury
13
《中国药理学通报》 CAS CSCD 北大核心 2015年第B11期163-164,共2页
We recently reported that nucleotide-binding oligomerization domain (NOD) 2, an important cytoplasmic pattern recognition receptor, is involved in cerebral ischemia-reperfusion (I/R) injury. β-arrestins, in addit... We recently reported that nucleotide-binding oligomerization domain (NOD) 2, an important cytoplasmic pattern recognition receptor, is involved in cerebral ischemia-reperfusion (I/R) injury. β-arrestins, in addition to regulate desensitization of G protein-coupled receptors (GPCRs) , have emerged as potential mediators of innate im- mune activation. However, the role and mechanism of β-arrestin2 in NOD2-triggered signaling in the cerebral I/R remain to be established. Methods BV2 cells were transfected with either β-arrestin2-shRNA plasmid or β-arres- tin2 full-length plasmid and control vector. Middle cerebral artery occlusion (MCAO) was induced in male wild- type mice and in wild type (WT) and β-arrestin2 deficient mice. Results muramyl dipeptide (MDP), an extrin- sic ligand of NOD2, significantly increased the expression of TRAF6 and COX-2 and enhanced the activation of NF- KB in the microglia time-dependently. MDP stimulation also promoted the expression and activation of MMP-9 time- dependently, but did not affect MMP-2 obviously. Additionally, β-arrestin 2 interacted with TRAF6 after MDP stim- ulation rapidly. Overexpression of β-arrestin2 inhibited NF-KB and MMP-9 activation and COX-2 upregulation in- duced by MDP, while silence of β-arrestin2 enhanced NOD2-triggered inflammatory signaling. Finally, Deletion of β-arrestin 2 markedly aggravated brain infarction, neurological deficit and inflammation induced by MDP in mice subjected to MCAO. Conclusion The results provide the first evidence that β-arrestin 2 is an essential negatively regulator of NOD2 triggered inflammatory signaling in the cerebral I/R injury. 展开更多
关键词 Β-ARRESTIN 2 NOD2 cerebral ischemia reperfusion MICROGLIA INNATE immunity inflammation.
下载PDF
Neuroprotective effect of Shenqi Fuzheng injection pretreatment in aged rats with cerebral ischemia/reperfusion injury 被引量:12
14
作者 Ying-min Cai Yong Zhang +5 位作者 Peng-bo Zhang Lu-ming Zhen Xiao-ju Sun Zhi-ling Wang Ren-yan Xu Rong-liang Xue 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第1期94-100,共7页
Shenqi Fuzheng injection is extracted from the Chinese herbs Radix Astragali and Radix Codonopsis. The aim of the present study was to investigate the neuroprotective effects of Shenqi Fuzheng injection in cerebral is... Shenqi Fuzheng injection is extracted from the Chinese herbs Radix Astragali and Radix Codonopsis. The aim of the present study was to investigate the neuroprotective effects of Shenqi Fuzheng injection in cerebral ischemia and reperfusion. Aged rats(20–22 months) were divided into three groups: sham, model, and treatment. Shenqi Fuzheng injection or saline(40 m L/kg) was injected into the tail vein daily for 1 week, after which a cerebral ischemia/reperfusion injury model was established. Compared with model rats that received saline, rats in the treatment group had smaller infarct volumes, lower brain water and malondialdehyde content, lower brain Ca2+ levels, lower activities of serum lactate dehydrogenase and creatine kinase, and higher superoxide dismutase activity. In addition, the treatment group showed less damage to the brain tissue ultrastructure and better neurological function. Our findings indicate that Shenqi Fuzheng injection exerts neuroprotective effects in aged rats with cerebral ischemia/reperfusion injury, and that the underlying mechanism relies on oxygen free radical scavenging and inhibition of brain Ca2+ accumulation. 展开更多
关键词 nerve regeneration cerebral ischemia/reperfusion Shenqi Fuzheng injection aged rats neurological function Ca 2+ oxygen free radicals NSFC grant neural regeneration
下载PDF
Neuroprotective effects of atorvastatin against cerebral ischemia/reperfusion injury through the inhibition of endoplasmic reticulum stress 被引量:14
15
作者 Jian-wen Yang Zhi-ping Hu 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第8期1239-1244,共6页
Cerebral ischemia triggers secondary ischemia/reperfusion injury and endoplasmic reticulum stress initiates cell apoptosis. However, the regulatory mechanism of the signaling pathway remains unclear. We hypothesize th... Cerebral ischemia triggers secondary ischemia/reperfusion injury and endoplasmic reticulum stress initiates cell apoptosis. However, the regulatory mechanism of the signaling pathway remains unclear. We hypothesize that the regulatory mechanisms are mediated by the protein kinase-like endoplasmic reticulum kinase/eukaryotic initiation factor 2α in the endoplasmic reticulum stress signaling pathway. To verify this hypothesis, we occluded the middle cerebral artery in rats to establish focal cerebral ischemia/reperfusion model. Results showed that the expression levels of protein kinase-like endoplasmic reticulum kinase and caspase-3, as well as the phosphorylation of eukaryotic initiation factor 2α, were increased after ischemia/reperfusion. Administration of atorvastatin decreased the expression of protein kinase-like endoplasmic reticulum kinase, caspase-3 and phosphorylated eukaryotic initiation factor 2α, reduced the infarct volume and improved ultrastructure in the rat brain. After salubrinal, the specific inhibitor of phosphorylated eukaryotic initiation factor 2α was given into the rats intragastrically, the expression levels of caspase-3 and phosphorylated eukaryotic initiation factor 2α in the were decreased, a reduction of the infarct volume and less ultrastructural damage were observed than the untreated, ischemic brain. However, salubrinal had no impact on the expression of protein kinase-like endoplasmic reticulum kinase. Experimental findings indicate that atorvastatin inhibits endoplasmic reticulum stress and exerts neuroprotective effects. The underlying mechanisms of attenuating ischemia/reperfusion injury are associated with the protein kinase-like endoplasmic reticulum kinase/eukaryotic initiation factor 2α/caspase-3 pathway. 展开更多
关键词 nerve regeneration neuroprotection protein kinase-like endoplasmic reticulum kinase eukaryotic initiation factor 2α endoplasmic reticulum stress focal cerebral ischemia/reperfusion atorvastatin apoptosis
下载PDF
Protective Effect of GRK2 and Effect of Sanguis Draconis Flavones on Focal Cerebral Ischemia-Reperfusion Injury in Rats
16
作者 Rui LI Huiyu JIA +2 位作者 Deyun JIA Min SI Dewu JIA 《Medicinal Plant》 CAS 2019年第4期44-48,50,共6页
[Objectives] To explore the protective effect of Sanguis Draconis flavones (SDF) on rat focal cerebral ischemia-reperfusion injury (CIRI) models established by middle cerebral artery occlusion (MCAO).[Methods] A total... [Objectives] To explore the protective effect of Sanguis Draconis flavones (SDF) on rat focal cerebral ischemia-reperfusion injury (CIRI) models established by middle cerebral artery occlusion (MCAO).[Methods] A total of 60 healthy adult male Sprague-Dawley rats were selected. They were evenly and randomly divided into sham group, model group, edaravone group (12 mg/kg) and SDF group (360 mg/kg), and administered intragastrically and intraperitoneally. The middle cerebral artery of each rat was blocked by suture-occluded method to establish a CIRI model. After ischemia for 2 h and reperfusion for 48 h, the pathological injury on the ischemic side was observed by HE staining;the neuron and myelin sheath structure was observed by transmission electron microscopy;the expression of G protein-coupled receptor kinase 2 (GRK2) was preserved by immunohistochemistry;and the transfer of GRK2 was detected by western-blot.[Results] After 48 h of CIRI, the nuclei of the penumbral cortical neurons shrank, the chromatin was unevenly distributed, the nuclear membrane was dissolved and the mitochondria in the cytoplasm were swollen and vacuolated. The myelin layer was disordered. With this change, the distribution of GRK2 subcellular cells in the penumbra of the injured lateral cortex transferred from the cytoplasm to the membrane. SDF can effectively restore neuronal and myelin sheath structural damage and reduce the functional (membrane coupling) expression of GRK2.[Conclusions] GRK2 may be an effective target for SDF to protect the impaired blood-brain barrier (BBB) in CIRI. 展开更多
关键词 Sanguis DRACONIS flavones cerebral ischemia-reperfusion injury G protein-coupled receptor kinase 2 Blood-brain barrier Matrix METALLOPROTEINASES
下载PDF
Puerarin partly counteracts the inflammatory response after cerebral ischemia/reperfusion via activating the cholinergic anti-inflammatory pathway 被引量:41
17
作者 Xiaojie Liu Zhigang Mei +2 位作者 Jingping Qian Yongbao Zeng Mingzhi Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第34期3203-3215,共13页
Puerarin, a major isoflavonoid derived from the Chinese medical herb radix puerariae (Gegen), has been reported to inhibit neuronal apoptosis and play an anti-inflammatory role in focal cerebral ischemia model rats.... Puerarin, a major isoflavonoid derived from the Chinese medical herb radix puerariae (Gegen), has been reported to inhibit neuronal apoptosis and play an anti-inflammatory role in focal cerebral ischemia model rats. Recent findings regarding stroke pathophysiology have recognized that anti-inflammation is an important target for the treatment of ischemic stroke. The cholinergic anti-inflammatory pathway is a highly robust neural-immune mechanism for inflammation control. This study was to investigate whether activating the cholinergic anti-inflammatory pathway can be involved in the mechanism of inhibiting the inflammatory response during puerarin-induced cerebral ischemia/reperfusion in rats. Results showed that puerarin pretreatment (intravenous injection) re- duced the ischemic infarct volume, improved neurological deficit after cerebral ischemia/reperfusion and decreased the levels of interleukin-1β, interleukin-6 and tumor necrosis factor-a in brain tissue. Pretreatment with puerarin (intravenous injection) attenuated the inflammatory response in rats, which was accompanied by janus-activated kinase 2 (JAK2) and signal transducers and activators of transcription 3 (STAT3) activation and nuclear factor kappa B (NF-KB) inhibition. These observa- tions were inhibited by the alpha7 nicotinic acetylcholine receptor (a7nAchR) antagonist a-bungarotoxin (a-BGT). In addition, puerarin pretreatment increased the expression of a7nAchR mRNA in ischemic cerebral tissue. These data demonstrate that puerarin pretreatment strongly protects the brain against cerebral ischemia/reperfusion injury and inhibits the inflammatory re- sponse. Our results also indicated that the anti-inflammatory effect of puerarin may partly be medi- ated through the activation of the cholinergic anti-inflammatory pathway. 展开更多
关键词 neural regeneration cerebral ischemia/reperfusion inflammation cholinergic anti-inflammatory pathway alpha7 nicotinicacetylcholine receptors nuclear factor kappa B janus-activated kinase 2 signal transducers and activators of transcription 3 grants-supported paper NEUROREGENERATION
下载PDF
Comparison of the anti-apoptotic effects of 15-and 35-minute suspended moxibustion after focal cerebral ischemia/reperfusion injury 被引量:16
18
作者 Ai-jiao Xiao Lin He +2 位作者 Xin Ouyang Jie-min Liu Ming-ren Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第2期257-264,共8页
Heat-sensitive suspended moxibustion has a neuroprotective effect against focal cerebral ischemia/reperfusion injury, but the underly- ing mechanisms remain unclear. The duration of heat-sensitive suspended moxibusti... Heat-sensitive suspended moxibustion has a neuroprotective effect against focal cerebral ischemia/reperfusion injury, but the underly- ing mechanisms remain unclear. The duration of heat-sensitive suspended moxibustion (usually from 30 minutes to 1 hour) is longer than traditional suspended moxibustion (usually 15 minutes). However, the effects of 15- and 35-minute suspended moxibustion in rats with cerebra/ischemia/reperfusion injury are poorly understood. In this study, we performed 15- or 35-minute suspended moxibustion at acupoint Dazhui (GV14) in an adult rat model of focal cerebral ischemia/reperfusion injury. Infarct volume was evaluated with the 2,3,5-triphenyltetrazolium chloride assay. Histopathological changes and neuronal apoptosis at the injury site were assessed by hematoxy- lin-eosin staining and terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Caspase-9 and caspase-3 expression at the in- jury site was detected using immunofluorescent staining. Bax and Bcl-2 expression at the injury site was assessed using western blot assay. In the 35-minute moxibustion group, infarct volume was decreased, neuronal apoptosis was reduced, caspase-9, caspase-3 and Bax expres- sion was lower, and Bcl-2 expression was increased, compared with the 15-minute moxibustion group. Our findings show that 35-minute moxibustion has a greater anti-apoptotic effect than 15-minute moxibustion after focal cerebral ischemia/reperfusion injury. 展开更多
关键词 nerve regeneration suspended moxibustion middle cerebral artery occlusion cerebral ischemia/reperfusion injury infarct volume apoptosis Bcl-2 BAX CASPASE-9 CASPASE-3 neural regeneration traditional Chinese medical therapy
下载PDF
Lateral intracerebroventricular injection of Apelin-13 inhibits apoptosis after cerebral ischemia/reperfusion injury 被引量:7
19
作者 Xiao-ge Yan Bao-hua Cheng +4 位作者 Xin Wang Liang-cai Ding Hai-qing Liu Jing Chen Bo Bai 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第5期766-771,共6页
Apelin- 13 inhibits neuronal apoptosis caused by hydrogen peroxide, yet apoptosis following cerebral ischemia-reperfusion injury has rarely been studied. In this study, Apelin-13 (0.1 μg/g) was injected into the la... Apelin- 13 inhibits neuronal apoptosis caused by hydrogen peroxide, yet apoptosis following cerebral ischemia-reperfusion injury has rarely been studied. In this study, Apelin-13 (0.1 μg/g) was injected into the lateral ventricle of middle cerebral artery occlusion model rats. TTC, TUNEL, and immuno- histochemical staining showed that compared with the cerebral ischemia/reperfusion group, infarct volume and apoptotic cell number at the ischemic penumbra region were decreased in the Apelin-13 treatment group. Additionally, Apelin-13 treatment increased Bcl-2 immtmoreactivity and decreased caspase-3 immunoreactivity, Our findings suggest that Apelin-13 is neuroprotective against cerebral ischemia/reperfusion injury through inhibition of neuronal apoptosis. 展开更多
关键词 nerve regeneration brain injury NEUROPROTECTION cerebral ischemia/reperfusion injury lateral intracerebroventricular injection APELIN-13 nerve apoptosis Bcl-2 caspase-3 NSFC grants neural regeneration
下载PDF
Neuroprotective effects of total saponins from Rubus parvifolius L. on cerebral ischemia/reperfusion injury in rats 被引量:6
20
作者 Jisheng Wang Fang Zhang +5 位作者 Li Tang Liqiong Sun Xiaolin Song] Lisha Cao Zongyin Qiu Chenglin Zhou 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第3期176-181,共6页
This study examines the neuroprotective effects and mechanisms of action of total saponins from Rubus parvifolius L. (TSRP) on focal cerebral ischemia and reperfusion injury in rats. Focal cerebral ischemia and repe... This study examines the neuroprotective effects and mechanisms of action of total saponins from Rubus parvifolius L. (TSRP) on focal cerebral ischemia and reperfusion injury in rats. Focal cerebral ischemia and reperfusion injury was performed in rats using the suture method. The results indicate that intragastric injection of TSRP, at 5, 10 and 20 mg/kg, could decrease neurological impairment, reduce cerebral infarct volume, diminish pathological changes, and significantly inhibit the apoptosis of neurons surrounding the ischemic area. In addition, TSRP upregulated the expression of the anti-apoptotic factor Bcl-2, at the protein and mRNA levels, and it downregulated the expression of the pro-apoptotic factor Bax, at the protein and mRNA levels. These findings indicate that TSRP protects against cerebral ischemia/reperfusion injury, and that it may do so by regulating the expression of Bcl-2 and Bax. 展开更多
关键词 total saponins of Rubus parvifolius L. cerebral ischemia/reperfusion APOPTOSIS BCL-2 BAX
下载PDF
上一页 1 2 22 下一页 到第
使用帮助 返回顶部