The modification methods of pozzolan slurry combined with sodium silicate and silicon-based additive were respectively adopted to treat recycled coarse brick-mixed aggregate(RCBA)in this study.The compressive strength...The modification methods of pozzolan slurry combined with sodium silicate and silicon-based additive were respectively adopted to treat recycled coarse brick-mixed aggregate(RCBA)in this study.The compressive strength and chloride permeability resistance of recycled aggregate concrete(RAC)before and after modification treatment were tested,and the microstructure of RAC was analyzed by mercury intrusion porosimetry(MIP)and scanning electron microscopy(SEM).The results show that the physical properties of RCBA strengthened by modification treatment are improved,and the compressive strength and chloride permeability resistance of treated RAC are also significantly improved.The modification treatment optimizes the pore size distribution of RAC,which increases the number of gel pores and transition pores,and decreases the number of capillary pores and macro pores.The surface fractal dimension shows a significant correlation with chloride diffusion coefficient,indicating that the variation of chloride permeability of treated RAC is consistent with the microstructure evolution.展开更多
To solve the problem of only surface carbonation and realize high-efficiency carbonation of recycled coarse aggregate,the method of carbonated recycled coarse aggregate with nano materials pre-soaking was first put fo...To solve the problem of only surface carbonation and realize high-efficiency carbonation of recycled coarse aggregate,the method of carbonated recycled coarse aggregate with nano materials pre-soaking was first put forward.The carbonation effect of modified recycled coarse aggregate with three different carbonation methods was evaluated,and water absorption,apparent density and crush index of modified recycled coarse aggregate were measured.Combined with XRD,SEM,and MIP microscopic analysis,the high-efficiency carbonation strengthening mechanism of modified recycled coarse aggregate was revealed.The experimental results show that,compared with the non-carbonated recycled coarse aggregate,the physical and microscopic properties of carbonated recycled coarse aggregate are improved.The method of carbonation with nano-SiO_(2) pre-soaking can realize the high-efficiency carbonation of recycled coarse aggregate,for modified recycled coarse aggregate with the method,water absorption is reduced by 23.03%,porosity is reduced by 44.06%,and the average pore diameter is 21.82 nm.The high-efficiency carbonation strengthening mechanism show that the pre-socked nano-SiO_(2) is bound to the hydration product Ca(OH)_(2) of the old mortar with nano-scale C-S-H,which can improve the CO_(2) absorption rate,accelerate the carbonation reaction,generate more stable CaCO_(3) and nano-scale silica gel,and bond to the dense three-dimensional network structure to realize the bidirectional enhancement of nano-materials and pressurized carbonation.It is concluded that the method of carbonation with nano-SiO_(2) pre-soaking is a novel high-efficiency carbonation modification of recycled coarse aggregate.展开更多
The reuse of waste recycled concrete from harsh environments has become a research hotspot in the field of construction.This study investigated the repair effect of carbonation treatment on second-generation recycled ...The reuse of waste recycled concrete from harsh environments has become a research hotspot in the field of construction.This study investigated the repair effect of carbonation treatment on second-generation recycled fine aggregate(SRFA)obtained from recycled fine aggregate concrete(RFAC)subjected to freeze-thaw(FT)cycles.Before and after carbonation,the properties of SRFA were evaluated.Carbonated second-generation recycled fine aggregate(CSRFA)at five substitution rates(0%,25%,50%,75%,100%)to replace SRFA was used to prepare carbonated second-generation recycled fine aggregate concrete(CSRFAC).The water absorption,porosity and mechanical properties of CSRFAC were tested,and its frost-resisting durability was evaluated.The results showed after carbonation treatment,the physical properties of SRFA was improved and met the requirements of II aggregate.The micro-hardness of the interfacial transition zone and attached mortar in CSRFA was 50.5%and 31.2%higher than that in SRFA,respectively.With the increase of CSRFA replacement rate,the water absorption and porosity of CSRFAC gradually decreased,and the mechanical properties and frost resistance of CSRFAC were gradually improved.Carbonation treatment effectively repairs the damage of SRFA caused by FT cycles and improves its application potential.展开更多
Recycled large aggregate self-compacting concrete (RLA-SCC) within multiple weak areas. These weak areas have poor resistance to chloride ion erosion, which affects the service life of RLA-SCC in the marine environmen...Recycled large aggregate self-compacting concrete (RLA-SCC) within multiple weak areas. These weak areas have poor resistance to chloride ion erosion, which affects the service life of RLA-SCC in the marine environment. A three-dimensional multi-phase mesoscopic numerical model of RLA-SCC was established to simulate the chloride ions transportation in concrete. Experiments of RLA-SCC immersing in chloride solution were carried out to verify the simulation results. The effects of recycled large aggregate (RLA) content and RLA particle size on the service life of concrete were explored. The results indicate that the mesoscopic numerical simulation results are in good agreement with the experimental results. At the same depth, the closer to the surface of the RLA, the greater the chloride ion concentration. The service life of RLA-SCC in marine environment decreases with the increase of RLA content. Compared with the service life of 20% content, the service life of 25% and 30% content decreased by 20% and 42% respectively. Increasing the particle size of RLA can effectively improve the service life of RLA-SCC in chloride environment. Compared with the service life of 50 mm particle size, the service life of 70 mm and 90 mm increased by 61% and 163%, respectively. .展开更多
With the emphasis on environmental issues,the recycling of waste concrete,even recycled concrete,has become a hot spot in the field of architecture.But the repeated recycling of waste concrete used in harsh environmen...With the emphasis on environmental issues,the recycling of waste concrete,even recycled concrete,has become a hot spot in the field of architecture.But the repeated recycling of waste concrete used in harsh environments is still a complex problem.This paper discusses the durability and recyclability of recycled aggregate concrete(RAC)as a prefabricated material in the harsh environment,the effect of high-temperature curing(60℃,80℃,and 100℃)on the frost resistance of RAC and physical properties of the second generation recycled coarse aggregate(RCA_(2))of RAC after 300 freeze-thaw cycles were studied.The frost resistance of RAC was characterized by compressive strength,relative dynamic elastic modulus,and mass loss.As the physical properties of RCA_(2),the apparent density,water absorption,and crushing value were measured.And the SEM images of RAC after 300 freeze-thaw cycles were shown.The results indicated that the frost resistance of RAC cured at 80℃ for 7 days was comparable to that cured in the standard condition(cured for 28 days at 20℃±2℃ and 95%humidity),and the RAC cured at 100℃ was slightly worse.However,the frost resistance of RAC cured at 60℃ deteriorated seriously.The RAC cured at 80℃ for 7 days is the best.Whether after the freeze-thaw cycle or not,the RCA that curd at 60℃,80℃,and 100℃ for 7 days can also meet the requirements of Grade III RCA and be used as the aggregate of non-bearing part of prefabricated concrete components.RCA_(2) which is cured at 80℃ for 7 days had the best physical properties.展开更多
In the past 20 years,recycled aggregate concrete(RAC),as a type of low-carbon concrete,has become a worldwide focus of research.However,the design methodology for RAC structural components remains a challenge.Conseque...In the past 20 years,recycled aggregate concrete(RAC),as a type of low-carbon concrete,has become a worldwide focus of research.However,the design methodology for RAC structural components remains a challenge.Consequently,demands for a unified design of natural aggregate concrete(NAC)and RAC components have been presented.Accordingly,this study analyses the necessity of a unified design theory and provides an in-depth demonstration of the strength determination,compressive constitutive relationship,and design method of concrete components.The coefficient of variation of RAC strength is found to be generally higher than that of NAC strength.The compressive and tensile strengths of RAC can be defined and determined using the same method as that used for NAC.The uniaxial compressive constitutive relationship between NAC and RAC has a unified mathematical expression.However,the elastic modulus of RAC decreases,and its brittleness exhibits an increasing trend compared with that of NAC.Finally,to unify the design formulae of RAC and NAC components for bearing capacity,modification factors for RAC components are proposed considering safety and reliability.Additionally,the feasibility of the proposed unified time-dependent design theory is demonstrated in terms of conceptual design and structural measures considering the effects of strength degradation and reinforcement corrosion.It is believed that this study enriches and develops the basic theory of concrete structures.展开更多
The development of recycled aggregate concrete(RAC)provides a new approach to limiting the waste of natural resources.In the present study,the mechanical properties and deformability of RACs were improved by adding ba...The development of recycled aggregate concrete(RAC)provides a new approach to limiting the waste of natural resources.In the present study,the mechanical properties and deformability of RACs were improved by adding basalt fibers(BFs)and using external restraints,such as a fiber-reinforced polymer(FRP)jacket or a PVC pipe.Samples were tested under axial compression.The results showed that RAC(50%replacement of aggregate)containing 0.2%BFs had the best mechanical properties.Using either BFs or PVC reinforcement had a slight effect on the loadbearing capacity and mode of failure.With different levels of BFs,the compressive strengths of the specimens reinforced with 1-layer and 3-layer basalt fiber reinforced polymer(BFRP)increased by 6.7%–10.5%and 16.5%–23.7%,respectively,and the ultimate strains increased by 48.5%–80.7%and 97.1%–141.1%,respectively.The peak stress of the 3-layer BFRP-PVC increased by 42.2%,and the ultimate strain improved by 131.3%,relative to the control.This reinforcement combined the high tensile strength of BFRP,which improved the post-peak behavior,and PVC,which enhanced the structural durability.In addition,to investigate the influence of the various constraints on compressive behavior,the stress-strain response was analyzed.Based on the analysis of experimental results,a peak stress-strain model and an amended ultimate stress-strain model were proposed.The models were verified as well;the result showed that the predictions from calculations are generally consistent with the experimental data(error within 10%).The results of this study provide a theoretical basis and reference for future applications of fiber-reinforced recycled concrete.展开更多
Using recycled aggregate(RA)and slag instead of natural aggregate(NA)and cement can reduce greenhouse gas emissions(GHGE)and achieve effective waste recovery.In recent years,RA has been widely used to replace NA in co...Using recycled aggregate(RA)and slag instead of natural aggregate(NA)and cement can reduce greenhouse gas emissions(GHGE)and achieve effective waste recovery.In recent years,RA has been widely used to replace NA in concrete.Every year,several researchers conduct investigations on the mechanical performance and durability of recycled aggregate concrete(RAC).Due to the loose and porous material properties of RA,the mechanical properties and durability of RAC,such as strength,carbonation resistance,permeability resistance and chloride ion penetration resistance,are greatly reduced compared with natural aggregate concrete.In contrast,concrete containing slag instead of NA and cement generally improved the strength of concrete and reduced the internal porosity of materials.Herein,we discuss the effects of RA and slag on the workability,compressive strength,splitting tensile strength,ultrasonic pulse velocity(UPV)value,and elastic modulus of concrete.The relationships between the compressive strength and the splitting tensile strength,UPV value,and elastic modulus are discussed,and the optimal substitution method is proposed.In addition,various equations for calculating the compressive strength of concrete based on performance factors related to the compressive strength are summarized.展开更多
Due to the presence of old mortar (OM) and interfacial transition zone (ITZ),recycled concrete aggregate (RCA) is inferior to natural aggregate (NA).The purpose of this paper was to study the effect of accelerated car...Due to the presence of old mortar (OM) and interfacial transition zone (ITZ),recycled concrete aggregate (RCA) is inferior to natural aggregate (NA).The purpose of this paper was to study the effect of accelerated carbonation on the macro-properties and micro-properties of RCA under different pressure(0.05,0.15,0.30 MPa).The macro-property tests included colour change,apparent density,water absorption,and crushing value of RCA.The micro-property tests included scanning electron microscopy (SEM),X-ray diffraction (XRD),thermogravimetry-differential scanning calorimetry (TG-DSC),and Vickers micro-hardness(VMH).The results showed that the change trends of apparent density,water absorption,and crushing value of RCA displayed exponential relationships as pressure increasing,with the optimum pressure of 0.30 MPa.SEM images indicated that the calcite caused by the hydration products in RCA and the Ca(OH)_(2) derived from saturated lime water improved the properties of RCA;as the apparent density increased,the water absorption and crushing value decreased.The results of XRD and TG-DSC indicated that,as the pressure increased,the masses of Ca(OH)_(2) in carbonated RCA gradually decreased,while those of CaCO_(3) gradually increased,which demonstrated that the carbonation degree gradually increased.Besides,ITZ-2 was the weakest phase in RCA,but its improvement degree of VMH by accelerated carbonation was higher than that of OM.However,RCA was not completely carbonated,but only carbonated in a certain depth after 24 h accelerated carbonation.展开更多
This paper presents an experimental study to explore the compressive properties of fiber recycled aggregate concrete.A total of 75 specimens with the replacement rate of recycled coarse aggregate and fiber type were c...This paper presents an experimental study to explore the compressive properties of fiber recycled aggregate concrete.A total of 75 specimens with the replacement rate of recycled coarse aggregate and fiber type were conducted under a uniaxial compressive test.The failure modes,stress-strain whole curves,peak stress,peak strain,and energy dissipation capacity were systematically observed and revealed.Test results indicate that steel fiber has the best modification effect on energy dissipation capacity and the toughness index of recycled concrete,corresponding to the enhancement of 81.75% and 22.90% on average.The addition of polyvinyl alcohol fiber can effectively improve the compressive strength and energy dissipation capacity of recycled aggregate concrete by 28.49% and 29.43% on average,respectively.The compressive strength and energy dissipation capacity of recycled aggregate concrete is increased by an average of 16.5% and 24.4% by incorporating carbon fiber.The energy dissipation capacity of recycled aggregate concrete is increased by an average of 13.5% with the incorporation of polypropylene fiber.However,the addition of carbon fiber results in a slight reduction of toughness by 16.97%,and the effect of polyvinyl alcohol fiber on the energy dissipation capacity is limited.Besides,with the increase in replacement rate,the compressive strength and the energy dissipation capacity of recycled coarse aggregate concrete with fiber decreased,and toughness first decreased and then increased.Finally,based on the analysis of test data,a segment-based stress-strain model of fiber recycled aggregate concrete was proposed,which shows good agreement with the test results.展开更多
In this paper,the effects of different influencing factors and factor interaction on the compressive strength and permeability of recycled aggregate pervious concrete(RAPC)were studied based on the response surface me...In this paper,the effects of different influencing factors and factor interaction on the compressive strength and permeability of recycled aggregate pervious concrete(RAPC)were studied based on the response surface method(RSM).By selecting the maximum aggregate size,water cement ratio and target porosity as design variables,combined with laboratory tests and numerical analysis,the influences of three factors on the compressive strength and permeability coefficient of RAPC were revealed.The regression equation of compressive strength and permeability coefficient of recycled aggregate pervious concrete were established based on RSM,and the response surface model was optimized to determine the optimal ratio of RAPC under the conditions of meeting the mechanical and permeability properties.The results show that the mismatch item of the model is not significant,the model is credible,and the accuracy and reliability of the test are high,but the degree of uncorrelation between the test data and the model is not obvious.The sensitivity of the three factors to the compressive strength is water cement ratio>maximum coarse aggregate particle size>target porosity,and the sensitivity to the permeability coefficient is target porosity>maximum coarse aggregate particle size>water cement ratio.The absolute errors of the model prediction results and the model optimization results are 1.28 MPa and 0.19 mm/s,and the relative errors are 5.06%and 4.19%,respectively.With high accuracy,RSM can match the measured results of compressive strength and permeability coefficient of RAPC.展开更多
During the modernization or rehabilitation activity,the demolished structural waste causes large soil pollution and unavailability of natural aggregate is the big concern for the construction industry.Therefore,this m...During the modernization or rehabilitation activity,the demolished structural waste causes large soil pollution and unavailability of natural aggregate is the big concern for the construction industry.Therefore,this manuscript deals with the Composite Steel Circular Column(CSCC)with Recycled Aggregate concrete(RAC)as infill is partly used,with the replacement of 25%and 50%in M30 grade of Concrete.And internal reinforcement steel is fully replaced by rolled steel tubes(circular and square)with varied thickness,ISA-unequal angle.Around 14 specimens are cast and examined under axial load for analysis of the deflection characteristics,the load-bearing capacity along with its buckling behavior.The experimental values are estimated through LVDT(linear variable differential transducer)at 3-phase.The curve of load-deflection is drawn with the load pattern.From the date interpretation,it is found column made of 50%-RAC has more than 25%-RAC.展开更多
This experimental study aims at the reuse of recycled aggregates (RA), resulting from the demolition of concrete, cement block and cement mortar, in the manufacture of common construction in Burkina Faso. The RA can r...This experimental study aims at the reuse of recycled aggregates (RA), resulting from the demolition of concrete, cement block and cement mortar, in the manufacture of common construction in Burkina Faso. The RA can readily replace natural aggregates in concrete. Then five formulations of natural and recycled aggregates based concrete for characteristic strength of 25 Mpa were prepared in addition to the natural aggregates base concrete named reference concrete (BN): two types of recycled aggregates concrete (BR), three types of recycles and natural combined aggregates base concrete (BC). The properties of natural and recycled aggregates were characterized and the physical, mechanical strength and durability properties were also evaluated for all concrete specimens. All the studied concrete formulation present a density between 2000 kg/m<sup>3</sup> ≤ ρ ≥ 2600 kg/m<sup>3</sup> and an average slump of 4.9 ± 0.1 cm. The obtained results indicate that the recycled aggregates are suitable for current concrete. Two out of the five combinations studied, such as the natural (BN) and combined aggregate (BC2) based concretes satisfy the mechanical characteristics (Rc<sub>28</sub> > 25 MPa) at 28 days of age and an average absorption coefficient of 2.93% and 3.98%. The recycled aggregate based concrete (BR1, BR2) and combined aggregate based concrete (BC1), gave respective average compressive strength of 21.55 MPa, 20.50 MPa and 20.30 MPa, i.e. a difference of 13.80% to 18.80% under the characteristic strength (25 MPa) aimed at 28 days of age. Thus, the recycled aggregates are in conformity with the normative prescriptions and their use for standard concrete gives adequate physical, mechanical and durability properties for the production of the C20/25 concrete series in the common civil engineering applications.展开更多
Recycled steel fiber reinforced concrete is an innovative construction material that offers exceptional mechanical properties and durability.It is considered a sustainable material due to its low carbon footprint and ...Recycled steel fiber reinforced concrete is an innovative construction material that offers exceptional mechanical properties and durability.It is considered a sustainable material due to its low carbon footprint and environmental friendly characteristics.This study examines the key influencing factors that affect the behavior of this material,such as the steel fiber volume ratio,recycled aggregate replacement rate,concrete strength grade,anchorage length,and stirrup constraint.The study investigates the bond failure morphology,bond-slip,and bond strength constitutive relationship of steel fiber recycled concrete.The results show that the addition of steel fibers at 0.5%,1.0%,and 1.5%volume ratios can improve the ultimate bond strength of pull-out specimens by 9.05%,6.94%,and 5.52%,respectively.The replacement rate of recycled aggregate has minimal effect on the typical bond strength of pull-out specimens.However,the ultimate bond strengths of pull-out specimens with concrete strength grades C45 and C60 have improved compared to those with C30 grade.The specimens with longer anchorage lengths exhibit lower ultimate bond strength,with a reduction of 33.19%and 46.37%for anchorage lengths of 5D and 7D,respectively,compared to those without stirrups.Stirrup restraint of 1φ8 and 2φ8 improves the ultimate bond strength by 5.29%and 6.90%,respectively.Steel fibers have a significant effect on the behavior of concrete after it cracks,especially during the stable expansion stage,crack instability expansion stage,and failure stage.展开更多
The application of self-compacting recycled concrete can solve the problem of environmental pollution caused by construction waste but its mechanical properties have not been unified and need further study.The strengt...The application of self-compacting recycled concrete can solve the problem of environmental pollution caused by construction waste but its mechanical properties have not been unified and need further study.The strength of recycled concrete is unstable,and its performance still needs further study.The combination of fixed sand and stone volume method and free water cement ratio method is used to determine the mix ratio of self-compacting recycled concrete.24 sets of slump expansion tests and 24 sets of cube axial compression tests were carried out to study the effect of recycled aggregate replacement rate on the flow performance and axial compressive strength of self-compacting recycled concrete,and the performance conversion formula of self-compacting recycled concrete was given.The results show that with the increase of the regenerated coarse aggregate substitution rate,the fluidity and filling property of the self-compacting regenerated concrete mix decreased.The failure of self-compacting recycled concrete is mainly due to the failure of strength between old mortar and new mixture.As the substitution rate increases from 0 to 100%,the axial compressive strength decreases by 15.2%.展开更多
The effects of fly ash on the compressive strength, pore size distribution and chloride-ion penetration of recycled aggregate concrete were investigated. Two series of concrete mb:tures were prepared. The concrete mi...The effects of fly ash on the compressive strength, pore size distribution and chloride-ion penetration of recycled aggregate concrete were investigated. Two series of concrete mb:tures were prepared. The concrete mixtures in series I had a water-to-binder ratio and a cement content of 0.55 and 410 kg/ m^3 , respectively. The concrete rnixtures in series II had a water-to-binder ratio and a cement content of 0.45 and 400 kg/ ml respectively. Recycled aggregate was ased as 20% , 50% , and 100% replacements of natural coarse aggregate in the concrete mixtures in both series. In cutdition, fly ash was used as 0% , 25% and 35% by weight replacements of cement. The results show that the compressive strengths of the concrete decreased as the recycled aggregate and the fly ash contents increased. The total porosity and average porosity diameter of the concrete increased us the recycled aggregate content increased. Furtherrruore , an increase in the recycled aggregate content decreased the resistance to chloride ion penetration. Nevertheless, the replacement of cement by 25% fly ush improved the resistance to chloride ion penetration and pore diameters and reduced the total porosity of the recycled aggregate concrete.展开更多
The viability of using polypropylene fibers(PPF) in concrete was largely studied. Yet, few of the existing research studies investigated the effects of PPF on the properties of concrete containing recycled concrete ag...The viability of using polypropylene fibers(PPF) in concrete was largely studied. Yet, few of the existing research studies investigated the effects of PPF on the properties of concrete containing recycled concrete aggregate(RCA). Mixes with different RCA replacement ratios and different PPF content were designed and tested. The test results showed that the addition of PPF did not change significantly the compressive strength and the density of the concrete, but slightly decreased its modulus of elasticity and Poisson’s ratio. The drop in the splitting tensile strength and the flexural strength due to RCA inclusions was to a large extent compensated by the PPF addition. The water absorption decreased and the percent voids increased with increased PPF addition. Correlations between the RCA content, the PPF content and the properties of concrete were studied. Useful regression models were proposed to predict the properties of concrete in relevant ranges of RCA and PPF content.展开更多
The characteristics of surface appearances,mass loss,relative dynamic modulus of elasticity and strength loss of different recycled aggregate concretes(RAC) exposed to freeze-thaw cycles were analyzed.It was found tha...The characteristics of surface appearances,mass loss,relative dynamic modulus of elasticity and strength loss of different recycled aggregate concretes(RAC) exposed to freeze-thaw cycles were analyzed.It was found that the freeze-thaw resistance of RAC could be determined by the recycled aggregate compositions and admixtures.Both the saturation degree and the air void structure were the key factors influencing the freeze-thaw damage on concrete.Some major proposed freeze-thaw deterioration mechanisms were utilized to interpret the freeze-thaw damage on recycled aggregate concrete.Meanwhile,some potential measures to enhance the freeze-thaw resistance of concrete were summarized and discussed.展开更多
The influence of source concrete (SC) with different compression strengths on the workability and mechanical properties of recycled mortar made with river sand substituted by 100% fine recycled concrete aggregates (FR...The influence of source concrete (SC) with different compression strengths on the workability and mechanical properties of recycled mortar made with river sand substituted by 100% fine recycled concrete aggregates (FRCA) is experimentally investigated. The basic physical performance test shows that with the increase in SC strength, FRCA exhibit lower water absorption and crushing index, meanwhile keeping higher densities. Mechanical property tests, including compressive strength, flexural strength and uniaxial compressive stress-strain tests, show that compressive strength,flexural strength and elasticity modulus of recycled sand mortars increase roughly with the increase in SC strength. The proposed mixture design method demonstrates that all of the components can be kept as the same as those in natural mortar mixture design and FRCA must be pre-wetted before making mortar mixture. Meanwhile, the reuse of higher strength SC can ensure that recycled mortar mixtures are able to achieve similar mechanical performance when compared to natural mortar designs.展开更多
Part of an extensive research undertaken by the Concrete and Masonry Research Group at Kingston University-London was reported to demonstrate through scientific research and full-scale site trials,that quality recycle...Part of an extensive research undertaken by the Concrete and Masonry Research Group at Kingston University-London was reported to demonstrate through scientific research and full-scale site trials,that quality recycled concrete aggregates can be produced and can be used successfully in a range of concrete applications.The effects of up to 100% coarse recycled concrete aggregate(RCA) on fresh,engineering and durability related properties were established and assessed its suitability for use in a rage of sustainable applications.展开更多
基金Funded by the National Natural Science Foundation of China(No.52078050)the Natural Science Basic Research Plan in Shaanxi Province of China(No.2020JZ-22)。
文摘The modification methods of pozzolan slurry combined with sodium silicate and silicon-based additive were respectively adopted to treat recycled coarse brick-mixed aggregate(RCBA)in this study.The compressive strength and chloride permeability resistance of recycled aggregate concrete(RAC)before and after modification treatment were tested,and the microstructure of RAC was analyzed by mercury intrusion porosimetry(MIP)and scanning electron microscopy(SEM).The results show that the physical properties of RCBA strengthened by modification treatment are improved,and the compressive strength and chloride permeability resistance of treated RAC are also significantly improved.The modification treatment optimizes the pore size distribution of RAC,which increases the number of gel pores and transition pores,and decreases the number of capillary pores and macro pores.The surface fractal dimension shows a significant correlation with chloride diffusion coefficient,indicating that the variation of chloride permeability of treated RAC is consistent with the microstructure evolution.
基金Funded by Joint Funds of the National Natural Science Foundation of China(No.U1904188)the Jiangxi Provincial Department of Education Science and Technology Project(Nos.GJJ171079,GJJ181023,and GJJ181022)。
文摘To solve the problem of only surface carbonation and realize high-efficiency carbonation of recycled coarse aggregate,the method of carbonated recycled coarse aggregate with nano materials pre-soaking was first put forward.The carbonation effect of modified recycled coarse aggregate with three different carbonation methods was evaluated,and water absorption,apparent density and crush index of modified recycled coarse aggregate were measured.Combined with XRD,SEM,and MIP microscopic analysis,the high-efficiency carbonation strengthening mechanism of modified recycled coarse aggregate was revealed.The experimental results show that,compared with the non-carbonated recycled coarse aggregate,the physical and microscopic properties of carbonated recycled coarse aggregate are improved.The method of carbonation with nano-SiO_(2) pre-soaking can realize the high-efficiency carbonation of recycled coarse aggregate,for modified recycled coarse aggregate with the method,water absorption is reduced by 23.03%,porosity is reduced by 44.06%,and the average pore diameter is 21.82 nm.The high-efficiency carbonation strengthening mechanism show that the pre-socked nano-SiO_(2) is bound to the hydration product Ca(OH)_(2) of the old mortar with nano-scale C-S-H,which can improve the CO_(2) absorption rate,accelerate the carbonation reaction,generate more stable CaCO_(3) and nano-scale silica gel,and bond to the dense three-dimensional network structure to realize the bidirectional enhancement of nano-materials and pressurized carbonation.It is concluded that the method of carbonation with nano-SiO_(2) pre-soaking is a novel high-efficiency carbonation modification of recycled coarse aggregate.
基金financially sponsored by Qing Lan Project in Jiangsu Province of China(2023)Scientific Research Project of Taizhou Polytechnic College(TZYKY-22-4).
文摘The reuse of waste recycled concrete from harsh environments has become a research hotspot in the field of construction.This study investigated the repair effect of carbonation treatment on second-generation recycled fine aggregate(SRFA)obtained from recycled fine aggregate concrete(RFAC)subjected to freeze-thaw(FT)cycles.Before and after carbonation,the properties of SRFA were evaluated.Carbonated second-generation recycled fine aggregate(CSRFA)at five substitution rates(0%,25%,50%,75%,100%)to replace SRFA was used to prepare carbonated second-generation recycled fine aggregate concrete(CSRFAC).The water absorption,porosity and mechanical properties of CSRFAC were tested,and its frost-resisting durability was evaluated.The results showed after carbonation treatment,the physical properties of SRFA was improved and met the requirements of II aggregate.The micro-hardness of the interfacial transition zone and attached mortar in CSRFA was 50.5%and 31.2%higher than that in SRFA,respectively.With the increase of CSRFA replacement rate,the water absorption and porosity of CSRFAC gradually decreased,and the mechanical properties and frost resistance of CSRFAC were gradually improved.Carbonation treatment effectively repairs the damage of SRFA caused by FT cycles and improves its application potential.
文摘Recycled large aggregate self-compacting concrete (RLA-SCC) within multiple weak areas. These weak areas have poor resistance to chloride ion erosion, which affects the service life of RLA-SCC in the marine environment. A three-dimensional multi-phase mesoscopic numerical model of RLA-SCC was established to simulate the chloride ions transportation in concrete. Experiments of RLA-SCC immersing in chloride solution were carried out to verify the simulation results. The effects of recycled large aggregate (RLA) content and RLA particle size on the service life of concrete were explored. The results indicate that the mesoscopic numerical simulation results are in good agreement with the experimental results. At the same depth, the closer to the surface of the RLA, the greater the chloride ion concentration. The service life of RLA-SCC in marine environment decreases with the increase of RLA content. Compared with the service life of 20% content, the service life of 25% and 30% content decreased by 20% and 42% respectively. Increasing the particle size of RLA can effectively improve the service life of RLA-SCC in chloride environment. Compared with the service life of 50 mm particle size, the service life of 70 mm and 90 mm increased by 61% and 163%, respectively. .
基金This research was funded by the National Natural Science Foundation of China(52078068)Practice Innovation Program of Jiangsu Province(KYCX22_3082).
文摘With the emphasis on environmental issues,the recycling of waste concrete,even recycled concrete,has become a hot spot in the field of architecture.But the repeated recycling of waste concrete used in harsh environments is still a complex problem.This paper discusses the durability and recyclability of recycled aggregate concrete(RAC)as a prefabricated material in the harsh environment,the effect of high-temperature curing(60℃,80℃,and 100℃)on the frost resistance of RAC and physical properties of the second generation recycled coarse aggregate(RCA_(2))of RAC after 300 freeze-thaw cycles were studied.The frost resistance of RAC was characterized by compressive strength,relative dynamic elastic modulus,and mass loss.As the physical properties of RCA_(2),the apparent density,water absorption,and crushing value were measured.And the SEM images of RAC after 300 freeze-thaw cycles were shown.The results indicated that the frost resistance of RAC cured at 80℃ for 7 days was comparable to that cured in the standard condition(cured for 28 days at 20℃±2℃ and 95%humidity),and the RAC cured at 100℃ was slightly worse.However,the frost resistance of RAC cured at 60℃ deteriorated seriously.The RAC cured at 80℃ for 7 days is the best.Whether after the freeze-thaw cycle or not,the RCA that curd at 60℃,80℃,and 100℃ for 7 days can also meet the requirements of Grade III RCA and be used as the aggregate of non-bearing part of prefabricated concrete components.RCA_(2) which is cured at 80℃ for 7 days had the best physical properties.
基金the financial support from the Distinguished Young Scholars of China by the National Natural Science Foundation of China(51325802)the National Natural Science Foundation of China(51178340,52078358,and 52008304)。
文摘In the past 20 years,recycled aggregate concrete(RAC),as a type of low-carbon concrete,has become a worldwide focus of research.However,the design methodology for RAC structural components remains a challenge.Consequently,demands for a unified design of natural aggregate concrete(NAC)and RAC components have been presented.Accordingly,this study analyses the necessity of a unified design theory and provides an in-depth demonstration of the strength determination,compressive constitutive relationship,and design method of concrete components.The coefficient of variation of RAC strength is found to be generally higher than that of NAC strength.The compressive and tensile strengths of RAC can be defined and determined using the same method as that used for NAC.The uniaxial compressive constitutive relationship between NAC and RAC has a unified mathematical expression.However,the elastic modulus of RAC decreases,and its brittleness exhibits an increasing trend compared with that of NAC.Finally,to unify the design formulae of RAC and NAC components for bearing capacity,modification factors for RAC components are proposed considering safety and reliability.Additionally,the feasibility of the proposed unified time-dependent design theory is demonstrated in terms of conceptual design and structural measures considering the effects of strength degradation and reinforcement corrosion.It is believed that this study enriches and develops the basic theory of concrete structures.
基金supported by the Natural Science Foundation Project of Liaoning Provincial Department of Education of China under Grant No.JJL201915404,Zhejiang Provincial Natural Science Foundation of China under Grant No.LQ22E080024 and Zhejiang Province Department of Education Fund of China under Grant No.Y202146776.
文摘The development of recycled aggregate concrete(RAC)provides a new approach to limiting the waste of natural resources.In the present study,the mechanical properties and deformability of RACs were improved by adding basalt fibers(BFs)and using external restraints,such as a fiber-reinforced polymer(FRP)jacket or a PVC pipe.Samples were tested under axial compression.The results showed that RAC(50%replacement of aggregate)containing 0.2%BFs had the best mechanical properties.Using either BFs or PVC reinforcement had a slight effect on the loadbearing capacity and mode of failure.With different levels of BFs,the compressive strengths of the specimens reinforced with 1-layer and 3-layer basalt fiber reinforced polymer(BFRP)increased by 6.7%–10.5%and 16.5%–23.7%,respectively,and the ultimate strains increased by 48.5%–80.7%and 97.1%–141.1%,respectively.The peak stress of the 3-layer BFRP-PVC increased by 42.2%,and the ultimate strain improved by 131.3%,relative to the control.This reinforcement combined the high tensile strength of BFRP,which improved the post-peak behavior,and PVC,which enhanced the structural durability.In addition,to investigate the influence of the various constraints on compressive behavior,the stress-strain response was analyzed.Based on the analysis of experimental results,a peak stress-strain model and an amended ultimate stress-strain model were proposed.The models were verified as well;the result showed that the predictions from calculations are generally consistent with the experimental data(error within 10%).The results of this study provide a theoretical basis and reference for future applications of fiber-reinforced recycled concrete.
基金support received from National Natural Science Foundation of China(Grant No.U2040224)Natural Science Foundation of Henan(Grant No.212300410018)Program for Innovative Research Team(in Science and Technology)in University of Henan Province of China(Grant No.20IRTSTHN009).
文摘Using recycled aggregate(RA)and slag instead of natural aggregate(NA)and cement can reduce greenhouse gas emissions(GHGE)and achieve effective waste recovery.In recent years,RA has been widely used to replace NA in concrete.Every year,several researchers conduct investigations on the mechanical performance and durability of recycled aggregate concrete(RAC).Due to the loose and porous material properties of RA,the mechanical properties and durability of RAC,such as strength,carbonation resistance,permeability resistance and chloride ion penetration resistance,are greatly reduced compared with natural aggregate concrete.In contrast,concrete containing slag instead of NA and cement generally improved the strength of concrete and reduced the internal porosity of materials.Herein,we discuss the effects of RA and slag on the workability,compressive strength,splitting tensile strength,ultrasonic pulse velocity(UPV)value,and elastic modulus of concrete.The relationships between the compressive strength and the splitting tensile strength,UPV value,and elastic modulus are discussed,and the optimal substitution method is proposed.In addition,various equations for calculating the compressive strength of concrete based on performance factors related to the compressive strength are summarized.
基金Funded by Joint Funds of the National Natural Science Foundation of China (No.U1904188)Key R&D and Promotion Projects in Henan Province,China (No.212102310288)the Key Science and Technology Program of Henan Province,China (No.202102310253)。
文摘Due to the presence of old mortar (OM) and interfacial transition zone (ITZ),recycled concrete aggregate (RCA) is inferior to natural aggregate (NA).The purpose of this paper was to study the effect of accelerated carbonation on the macro-properties and micro-properties of RCA under different pressure(0.05,0.15,0.30 MPa).The macro-property tests included colour change,apparent density,water absorption,and crushing value of RCA.The micro-property tests included scanning electron microscopy (SEM),X-ray diffraction (XRD),thermogravimetry-differential scanning calorimetry (TG-DSC),and Vickers micro-hardness(VMH).The results showed that the change trends of apparent density,water absorption,and crushing value of RCA displayed exponential relationships as pressure increasing,with the optimum pressure of 0.30 MPa.SEM images indicated that the calcite caused by the hydration products in RCA and the Ca(OH)_(2) derived from saturated lime water improved the properties of RCA;as the apparent density increased,the water absorption and crushing value decreased.The results of XRD and TG-DSC indicated that,as the pressure increased,the masses of Ca(OH)_(2) in carbonated RCA gradually decreased,while those of CaCO_(3) gradually increased,which demonstrated that the carbonation degree gradually increased.Besides,ITZ-2 was the weakest phase in RCA,but its improvement degree of VMH by accelerated carbonation was higher than that of OM.However,RCA was not completely carbonated,but only carbonated in a certain depth after 24 h accelerated carbonation.
基金supported by the Postdoctoral Science Foundation of China(2021M693854)the Doctoral Foundation of Guangxi University of Science and Technology(No.18Z09)Bagui Scholar Program sponsored from the People’s Government of Guangxi Zhuang Autonomous Region(No.2019(79)).
文摘This paper presents an experimental study to explore the compressive properties of fiber recycled aggregate concrete.A total of 75 specimens with the replacement rate of recycled coarse aggregate and fiber type were conducted under a uniaxial compressive test.The failure modes,stress-strain whole curves,peak stress,peak strain,and energy dissipation capacity were systematically observed and revealed.Test results indicate that steel fiber has the best modification effect on energy dissipation capacity and the toughness index of recycled concrete,corresponding to the enhancement of 81.75% and 22.90% on average.The addition of polyvinyl alcohol fiber can effectively improve the compressive strength and energy dissipation capacity of recycled aggregate concrete by 28.49% and 29.43% on average,respectively.The compressive strength and energy dissipation capacity of recycled aggregate concrete is increased by an average of 16.5% and 24.4% by incorporating carbon fiber.The energy dissipation capacity of recycled aggregate concrete is increased by an average of 13.5% with the incorporation of polypropylene fiber.However,the addition of carbon fiber results in a slight reduction of toughness by 16.97%,and the effect of polyvinyl alcohol fiber on the energy dissipation capacity is limited.Besides,with the increase in replacement rate,the compressive strength and the energy dissipation capacity of recycled coarse aggregate concrete with fiber decreased,and toughness first decreased and then increased.Finally,based on the analysis of test data,a segment-based stress-strain model of fiber recycled aggregate concrete was proposed,which shows good agreement with the test results.
基金supported by the Jiangsu Water Conservancy Science and Technology Project of China(2016036).
文摘In this paper,the effects of different influencing factors and factor interaction on the compressive strength and permeability of recycled aggregate pervious concrete(RAPC)were studied based on the response surface method(RSM).By selecting the maximum aggregate size,water cement ratio and target porosity as design variables,combined with laboratory tests and numerical analysis,the influences of three factors on the compressive strength and permeability coefficient of RAPC were revealed.The regression equation of compressive strength and permeability coefficient of recycled aggregate pervious concrete were established based on RSM,and the response surface model was optimized to determine the optimal ratio of RAPC under the conditions of meeting the mechanical and permeability properties.The results show that the mismatch item of the model is not significant,the model is credible,and the accuracy and reliability of the test are high,but the degree of uncorrelation between the test data and the model is not obvious.The sensitivity of the three factors to the compressive strength is water cement ratio>maximum coarse aggregate particle size>target porosity,and the sensitivity to the permeability coefficient is target porosity>maximum coarse aggregate particle size>water cement ratio.The absolute errors of the model prediction results and the model optimization results are 1.28 MPa and 0.19 mm/s,and the relative errors are 5.06%and 4.19%,respectively.With high accuracy,RSM can match the measured results of compressive strength and permeability coefficient of RAPC.
文摘During the modernization or rehabilitation activity,the demolished structural waste causes large soil pollution and unavailability of natural aggregate is the big concern for the construction industry.Therefore,this manuscript deals with the Composite Steel Circular Column(CSCC)with Recycled Aggregate concrete(RAC)as infill is partly used,with the replacement of 25%and 50%in M30 grade of Concrete.And internal reinforcement steel is fully replaced by rolled steel tubes(circular and square)with varied thickness,ISA-unequal angle.Around 14 specimens are cast and examined under axial load for analysis of the deflection characteristics,the load-bearing capacity along with its buckling behavior.The experimental values are estimated through LVDT(linear variable differential transducer)at 3-phase.The curve of load-deflection is drawn with the load pattern.From the date interpretation,it is found column made of 50%-RAC has more than 25%-RAC.
文摘This experimental study aims at the reuse of recycled aggregates (RA), resulting from the demolition of concrete, cement block and cement mortar, in the manufacture of common construction in Burkina Faso. The RA can readily replace natural aggregates in concrete. Then five formulations of natural and recycled aggregates based concrete for characteristic strength of 25 Mpa were prepared in addition to the natural aggregates base concrete named reference concrete (BN): two types of recycled aggregates concrete (BR), three types of recycles and natural combined aggregates base concrete (BC). The properties of natural and recycled aggregates were characterized and the physical, mechanical strength and durability properties were also evaluated for all concrete specimens. All the studied concrete formulation present a density between 2000 kg/m<sup>3</sup> ≤ ρ ≥ 2600 kg/m<sup>3</sup> and an average slump of 4.9 ± 0.1 cm. The obtained results indicate that the recycled aggregates are suitable for current concrete. Two out of the five combinations studied, such as the natural (BN) and combined aggregate (BC2) based concretes satisfy the mechanical characteristics (Rc<sub>28</sub> > 25 MPa) at 28 days of age and an average absorption coefficient of 2.93% and 3.98%. The recycled aggregate based concrete (BR1, BR2) and combined aggregate based concrete (BC1), gave respective average compressive strength of 21.55 MPa, 20.50 MPa and 20.30 MPa, i.e. a difference of 13.80% to 18.80% under the characteristic strength (25 MPa) aimed at 28 days of age. Thus, the recycled aggregates are in conformity with the normative prescriptions and their use for standard concrete gives adequate physical, mechanical and durability properties for the production of the C20/25 concrete series in the common civil engineering applications.
基金supported by the Key R&D Projects in Yunnan Province under Grant Number 202203AC100004Additional funding was provided by the Major Science and Technology Project of the Ministry of Water Resources under Grant Number SKS-2022057.
文摘Recycled steel fiber reinforced concrete is an innovative construction material that offers exceptional mechanical properties and durability.It is considered a sustainable material due to its low carbon footprint and environmental friendly characteristics.This study examines the key influencing factors that affect the behavior of this material,such as the steel fiber volume ratio,recycled aggregate replacement rate,concrete strength grade,anchorage length,and stirrup constraint.The study investigates the bond failure morphology,bond-slip,and bond strength constitutive relationship of steel fiber recycled concrete.The results show that the addition of steel fibers at 0.5%,1.0%,and 1.5%volume ratios can improve the ultimate bond strength of pull-out specimens by 9.05%,6.94%,and 5.52%,respectively.The replacement rate of recycled aggregate has minimal effect on the typical bond strength of pull-out specimens.However,the ultimate bond strengths of pull-out specimens with concrete strength grades C45 and C60 have improved compared to those with C30 grade.The specimens with longer anchorage lengths exhibit lower ultimate bond strength,with a reduction of 33.19%and 46.37%for anchorage lengths of 5D and 7D,respectively,compared to those without stirrups.Stirrup restraint of 1φ8 and 2φ8 improves the ultimate bond strength by 5.29%and 6.90%,respectively.Steel fibers have a significant effect on the behavior of concrete after it cracks,especially during the stable expansion stage,crack instability expansion stage,and failure stage.
文摘The application of self-compacting recycled concrete can solve the problem of environmental pollution caused by construction waste but its mechanical properties have not been unified and need further study.The strength of recycled concrete is unstable,and its performance still needs further study.The combination of fixed sand and stone volume method and free water cement ratio method is used to determine the mix ratio of self-compacting recycled concrete.24 sets of slump expansion tests and 24 sets of cube axial compression tests were carried out to study the effect of recycled aggregate replacement rate on the flow performance and axial compressive strength of self-compacting recycled concrete,and the performance conversion formula of self-compacting recycled concrete was given.The results show that with the increase of the regenerated coarse aggregate substitution rate,the fluidity and filling property of the self-compacting regenerated concrete mix decreased.The failure of self-compacting recycled concrete is mainly due to the failure of strength between old mortar and new mixture.As the substitution rate increases from 0 to 100%,the axial compressive strength decreases by 15.2%.
基金Funded by the Environment and Conservation Fund, the WooWheelock Green Fund andthe Hong Kong Polytechnic University
文摘The effects of fly ash on the compressive strength, pore size distribution and chloride-ion penetration of recycled aggregate concrete were investigated. Two series of concrete mb:tures were prepared. The concrete mixtures in series I had a water-to-binder ratio and a cement content of 0.55 and 410 kg/ m^3 , respectively. The concrete rnixtures in series II had a water-to-binder ratio and a cement content of 0.45 and 400 kg/ ml respectively. Recycled aggregate was ased as 20% , 50% , and 100% replacements of natural coarse aggregate in the concrete mixtures in both series. In cutdition, fly ash was used as 0% , 25% and 35% by weight replacements of cement. The results show that the compressive strengths of the concrete decreased as the recycled aggregate and the fly ash contents increased. The total porosity and average porosity diameter of the concrete increased us the recycled aggregate content increased. Furtherrruore , an increase in the recycled aggregate content decreased the resistance to chloride ion penetration. Nevertheless, the replacement of cement by 25% fly ush improved the resistance to chloride ion penetration and pore diameters and reduced the total porosity of the recycled aggregate concrete.
基金funded by the National Council for Scientific Research in Lebanon (CNRS - Lebanon)
文摘The viability of using polypropylene fibers(PPF) in concrete was largely studied. Yet, few of the existing research studies investigated the effects of PPF on the properties of concrete containing recycled concrete aggregate(RCA). Mixes with different RCA replacement ratios and different PPF content were designed and tested. The test results showed that the addition of PPF did not change significantly the compressive strength and the density of the concrete, but slightly decreased its modulus of elasticity and Poisson’s ratio. The drop in the splitting tensile strength and the flexural strength due to RCA inclusions was to a large extent compensated by the PPF addition. The water absorption decreased and the percent voids increased with increased PPF addition. Correlations between the RCA content, the PPF content and the properties of concrete were studied. Useful regression models were proposed to predict the properties of concrete in relevant ranges of RCA and PPF content.
基金Funded by the National Key Research and Development Program of China during the“13th Five-Year Plan”(No.2018 YFD1101001)。
文摘The characteristics of surface appearances,mass loss,relative dynamic modulus of elasticity and strength loss of different recycled aggregate concretes(RAC) exposed to freeze-thaw cycles were analyzed.It was found that the freeze-thaw resistance of RAC could be determined by the recycled aggregate compositions and admixtures.Both the saturation degree and the air void structure were the key factors influencing the freeze-thaw damage on concrete.Some major proposed freeze-thaw deterioration mechanisms were utilized to interpret the freeze-thaw damage on recycled aggregate concrete.Meanwhile,some potential measures to enhance the freeze-thaw resistance of concrete were summarized and discussed.
基金The National Key Research and Development Programm of China(No.2018YFD1100402-05)the National Natural Science Foundation of China(No.6505000184)
文摘The influence of source concrete (SC) with different compression strengths on the workability and mechanical properties of recycled mortar made with river sand substituted by 100% fine recycled concrete aggregates (FRCA) is experimentally investigated. The basic physical performance test shows that with the increase in SC strength, FRCA exhibit lower water absorption and crushing index, meanwhile keeping higher densities. Mechanical property tests, including compressive strength, flexural strength and uniaxial compressive stress-strain tests, show that compressive strength,flexural strength and elasticity modulus of recycled sand mortars increase roughly with the increase in SC strength. The proposed mixture design method demonstrates that all of the components can be kept as the same as those in natural mortar mixture design and FRCA must be pre-wetted before making mortar mixture. Meanwhile, the reuse of higher strength SC can ensure that recycled mortar mixtures are able to achieve similar mechanical performance when compared to natural mortar designs.
文摘Part of an extensive research undertaken by the Concrete and Masonry Research Group at Kingston University-London was reported to demonstrate through scientific research and full-scale site trials,that quality recycled concrete aggregates can be produced and can be used successfully in a range of concrete applications.The effects of up to 100% coarse recycled concrete aggregate(RCA) on fresh,engineering and durability related properties were established and assessed its suitability for use in a rage of sustainable applications.