期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A Comparative Assessment of Aerodynamic Models for Buffeting and Flutter of Long-Span Bridges 被引量:3
1
作者 Igor Kavrakov Guido Morgenthal 《Engineering》 SCIE EI 2017年第6期823-838,共16页
Wind-induced vibrations commonly represent the leading criterion in the design of long-span bridges. The aerodynamic forces in bridge aerodynamics are mainly based on the quasi-steady and linear unsteady theory. This ... Wind-induced vibrations commonly represent the leading criterion in the design of long-span bridges. The aerodynamic forces in bridge aerodynamics are mainly based on the quasi-steady and linear unsteady theory. This paper aims to investigate different formulations of self-excited and buffeting forces in the time domain by comparing the dynamic response of a multi-span cable-stayed bridge during the critical erection condition. The bridge is selected to represent a typical reference object with a bluff con- crete box girder for large river crossings. The models are viewed from a perspective of model complexity, comparing the influence of the aerodynamic properties implied in the aerodynamic models, such as aerodynamic damping and stiffness, fluid memory in the buffeting and self-excited forces, aerodynamic nonlinearity, and aerodynamic coupling on the bridge response. The selected models are studied for a windspeed range that is typical for the construction stage for two levels of turbulence intensity. Furthermore, a simplified method for the computation of buffeting forces including the aerodynamic admittance is presented, in which rational approximation is avoided. The critical flutter velocities are also compared for the selected models under laminar flow. 展开更多
关键词 BUFFETING FlutterLong-span bridges bridge aerodynamics bridge aeroelasticity Erection stage
下载PDF
Self-contained eigenvector algorithm applied to the identification of aerodynamic derivatives of bridge model 被引量:3
2
作者 ZHANG XiaoXu CHEN LiFen SONG HanWen 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第5期1134-1140,共7页
On one hand, when the bridge stays in a windy environment, the aerodynamic power would reduce it to act as a non-classic system. Consequently, the transposition of the system’s right eigenmatrix will not equal its le... On one hand, when the bridge stays in a windy environment, the aerodynamic power would reduce it to act as a non-classic system. Consequently, the transposition of the system’s right eigenmatrix will not equal its left eigenmatrix any longer. On the other hand, eigenmatrix plays an important role in model identification, which is the basis of the identification of aerodynamic derivatives. In this study, we follow Scanlan’s simple bridge model and utilize the information provided by the left and right eigenmatrixes to structure a self-contained eigenvector algorithm in the frequency domain. For the purpose of fitting more accurate transfer function, the study adopts the combined sine-wave stimulation method in the numerical simulation. And from the simulation results, we can conclude that the derivatives identified by the self-contained eigenvector algorithm are more dependable. 展开更多
关键词 bridge model aerodynamic derivatives eigenvector modal analysis parameter identification
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部