During the construction of cast-in-place piles in warm permafrost,the heat carried by concrete and the cement hydration reaction can cause strong thermal disturbance to the surrounding permafrost.Since the bearing cap...During the construction of cast-in-place piles in warm permafrost,the heat carried by concrete and the cement hydration reaction can cause strong thermal disturbance to the surrounding permafrost.Since the bearing capacity of the pile is quite small before the full freeze-back,the quick refreezing of the native soils surrounding the cast-in-place pile has become the focus of the infrastructure construction in permafrost.To solve this problem,this paper innovatively puts forward the application of the artificial ground freezing(AGF)method at the end of the curing period of cast-in-place piles in permafrost.A field test on the AGF was conducted at the Beiluhe Observation and Research Station of Frozen Soil Engineering and Environment(34°51.2'N,92°56.4'E)in the Qinghai Tibet Plateau(QTP),and then a 3-D numerical model was established to investigate the thermal performance of piles using AGF under different engineering conditions.Additionally,the long-term thermal performance of piles after the completion of AGF under different conditions was estimated.Field experiment results demonstrate that AGF is an effective method to reduce the refreezing time of the soil surrounding the piles constructed in permafrost terrain,with the ability to reduce the pile-soil interface temperatures to below the natural ground temperature within 3 days.Numerical results further prove that AGF still has a good cooling effect even under unfavorable engineering conditions such as high pouring temperature,large pile diameter,and large pile length.Consequently,the application of this method is meaningful to save the subsequent latency time and solve the problem of thermal disturbance in pile construction in permafrost.The research results are highly relevant for the spread of AGF technology and the rapid building of pile foundations in permafrost.展开更多
Urban infrastructure has become more complex with the rapid development of urban transportation networks.In urban environments with limited space,construction of facilities like subways and bridges may mutually influe...Urban infrastructure has become more complex with the rapid development of urban transportation networks.In urban environments with limited space,construction of facilities like subways and bridges may mutually influence each other,especially when subway construction requires passing under bridges.In such cases,pile foundation replacement technology is often necessary.However,this technology is highly specialized,with a lengthy and risky construction period,and high costs.Personnel must be proficient in key technical aspects to ensure construction quality.This article discusses the technical principle,construction process,and core technology of pile foundation replacement,along with the application of this technology in subway tunnel crossing bridge projects,supported by engineering examples for reference.展开更多
A shaking table test for a bridge foundation reinforced by anti-slide piles on a silty clay landslide model with an inclined interlayer was performed.The deformation characteristics of the bridge foundation piles and ...A shaking table test for a bridge foundation reinforced by anti-slide piles on a silty clay landslide model with an inclined interlayer was performed.The deformation characteristics of the bridge foundation piles and anti-slide piles were analyzed in different loading conditions.The dynamic response law of a silty clay landslide with an inclined interlayer was summarized.The spacing between the rear anti-slide piles and bridge foundation should be reasonably controlled according to the seismic fortification requirements,to avoid the two peaks in the forced deformation of the bridge foundation piles.The“blocking effect”of the bridge foundation piles reduced the deformation of the forward anti-slide piles.The stress-strain response of silty clay was intensified as the vibration wave field appeared on the slope.Since the vibration intensified,the thrust distribution of the landslide underwent a process of shifting from triangle to inverted trapezoid,the difference in the acceleration response between the bearing platform and silty clay landslide tended to decrease,and the spectrum amplitude near the natural vibration frequency increased.The rear anti-slide piles were able to slow down the shear deformation of the soil in front of the piles and avoid excessive acceleration response of the bridge foundation piles.展开更多
The bearing capacity of pile foundations is affected by the temperature of the frozen soil around pile foundations.The construction process and the hydration heat of cast-in-place(CIP)pile foundations affect the therm...The bearing capacity of pile foundations is affected by the temperature of the frozen soil around pile foundations.The construction process and the hydration heat of cast-in-place(CIP)pile foundations affect the thermal stability of permafrost.In this paper,temperature data from inside multiple CIP piles,borehole observations of ground thermal status adjacent to the foundations and local weather stations were monitored in warm permafrost regions to study the thermal influence process of CIP pile foundations.The following conclusions are drawn from the field observation data.(1)The early temperature change process of different CIP piles is different,and the differences gradually diminish over time.(2)The initial concrete temperature is linearly related with the air temperature,net radiation and wind speed within 1 h before the completion of concrete pouring;the contributions of the air temperature,net radiation,and wind speed to the initial concrete temperature are 51.9%,20.3%and 27.9%,respectively.(3)The outer boundary of the thermal disturbance annulus is approximately 2 m away from the pile center.It took more than 224 days for the soil around the CIP piles to return to the natural permafrost temperature at the study site.展开更多
In order to improve the quality of bored piles in bridge construction and ensure the overall quality of the bridge,we analyzed a series of problems in the construction process of bored piles,then propose corresponding...In order to improve the quality of bored piles in bridge construction and ensure the overall quality of the bridge,we analyzed a series of problems in the construction process of bored piles,then propose corresponding quality control measures,in hopes of improving quality control of bored piles in bridge construction in our country.展开更多
In this paper,the application strategy of ultrasonic detection technology in the detection of concrete foundation piles is analyzed using a construction project as an example.It includes a basic overview of the projec...In this paper,the application strategy of ultrasonic detection technology in the detection of concrete foundation piles is analyzed using a construction project as an example.It includes a basic overview of the project,an overview of ultrasonic testing technology in bridge concrete pile foundation testing,and an analysis of its practical application in the concrete pile foundation testing of this project.The objective of this analysis is to provide some reference for the application of ultrasonic testing technology and the improvement of the quality of bridge concrete pile foundation testing.展开更多
The Hong Kong–Zhuhai–Macao Bridge(HZMB)involved the installation of 120 mega-cylinders with a diameter of 22 m,weights up to 513 t,and penetration depths up to 33 m using an eight-vibratory hammer group.Due to the l...The Hong Kong–Zhuhai–Macao Bridge(HZMB)involved the installation of 120 mega-cylinders with a diameter of 22 m,weights up to 513 t,and penetration depths up to 33 m using an eight-vibratory hammer group.Due to the lack of engineering experience on the drivability of large-diameter cylinders under multiple vibratory hammers,predicting the penetration rate and time of steel cylinders is an open challenge that has a considerable impact on the construction control of the HZMB.In this study,the vibratory penetration of large-diameter steel cylinders in the HZMB is investigated based on geological surveys,field monitoring,and drivability analysis.The vibratory penetration rate,installation accuracy,and dynamic responses of the steel cylinders at both the eastern and western artificial islands are analyzed.The dynamic soil resistance has a great influence on the cylinder drivability.However,the current design methods for estimating the vibratory driving soil resistance are proven inaccurate without considering the scale effects.Therefore,a modified method with a normalized effective area ratio A_(r,eff)is proposed in this study to calculate the vibratory soil resistance for open-ended thin-wall cylinders under unplugged conditions.Considering the scale effects on the vibratory driving soil resistance,the proposed method leads to closer results to the measured data,providing a reference for future engineering practice.展开更多
This paper describes a shake table test study on the seismic response of low-cap pile groups and a bridge structure in liquefiable ground. The soil profile, contained in a large-scale laminar shear box, consisted of a...This paper describes a shake table test study on the seismic response of low-cap pile groups and a bridge structure in liquefiable ground. The soil profile, contained in a large-scale laminar shear box, consisted of a horizontally saturated sand layer overlaid with a silty clay layer, with the simulated low-cap pile groups embedded. The container was excited in three E1 Centro earthquake events of different levels. Test results indicate that excessive pore pressure (EPP) during slight shaking only slightly accumulated, and the accumulation mainly occurred during strong shaking. The EPP was gradually enhanced as the amplitude and duration of the input acceleration increased. The acceleration response of the sand was remarkably influenced by soil liquefaction. As soil liquefaction occurred, the peak sand displacement gradually lagged behind the input acceleration; meanwhile, the sand displacement exhibited an increasing effect on the bending moment of the pile, and acceleration responses of the pile and the sand layer gradually changed from decreasing to increasing in the vertical direction from the bottom to the top. A jump variation of the bending moment on the pile was observed near the soil interface in all three input earthquake events. It is thought that the shake table tests could provide the groundwork for further seismic performance studies of low-cap pile groups used in bridges located on liquefiable groun.展开更多
In the construction of the Qinghai-Tibet Power Transmission Line (QTPTL), cast-in-place piles (CIPPs) are widely applied in areas with unfavorable geological conditions. The thermal regime around piles in permafro...In the construction of the Qinghai-Tibet Power Transmission Line (QTPTL), cast-in-place piles (CIPPs) are widely applied in areas with unfavorable geological conditions. The thermal regime around piles in permafrost regions greatly affects the stability of the towers as well as the operation of the QTPTL. The casting of piles will markedly affect the thermal regime of the surrounding permafrost because of the casting temperature and the hydration heat of cement. Based on the typical geological and engineering conditions along the QTPTL, thermal disturbance ofa CIPP to surrounding permafrost under different casting seasons, pile depths, and casting temperatures were simulated. The results show that the casting season (summer versus winter) can influence the refreezing process of CIPPs, within the first 6 m of pile depth. Sixty days after being cast, CIPPs greater than 6 m in depth can be frozen regardless of which season they were cast, and the foundation could be reffozen after a cold season. Comparing the refreezing characteristics of CIPPs cast in different seasons also showed that, without considering the ground surface conditions, warm seasons are more suitable for casting piles. With the increase of pile depth, the thermal effect of a CIPP on the surrounding soil mainly expands vertically, while the lateral heat disturbance changes little. Deeper, longer CIPPs have better stability. The casting temperature clearly affects the thermal disturbance, and the radius of the melting circle increases with rising casting temperature. The optimal casting temperature is between 2 ℃ and 9 ℃.展开更多
Based on reasonable assumptions that simplified the calculational model,a simple and practical method was proposed to calculate the post-construction settlement of high-speed railway bridge pile foundation by using th...Based on reasonable assumptions that simplified the calculational model,a simple and practical method was proposed to calculate the post-construction settlement of high-speed railway bridge pile foundation by using the Mesri creep model to describe the soil characteristics and the Mindlin-Geddes method considering pile diameter to calculate the vertical additional stress of pile bottom.A program named CPPS was designed for this method to calculate the post-construction settlement of a high-speed railway bridge pile foundation.The result indicates that the post-construction settlement in 100 years meets the requirements of the engineering specifications,and in the first two decades,the post-construction settlement is about 80% of its total settlement,while the settlement in the rest eighty years tends to be stable.Compared with the measured settlement after laying railway tracks,the calculational result is closed to that of the measured,and the results are conservative with a high computational accuracy.It is noted that the method can be used to calculate the post-construction settlement for the preliminary design of high-speed railway bridge pile foundation.展开更多
At present,shield tunneling often needs to pass through a large number of bridge pile foundations.However,there are few studies on the influence of shield tunneling on adjacent pile foundations by combining with groun...At present,shield tunneling often needs to pass through a large number of bridge pile foundations.However,there are few studies on the influence of shield tunneling on adjacent pile foundations by combining with groundwater seepage.Based on Winkler model,the calculation equations of shield tunneling on vertical and horizontal displacement of adjacent bridge pile are derived.Meanwhile,full and part three-dimensional finite element models are established to analyze the trend of bridge pier settlement,ground surface settlement trough,vertical and horizontal displacement of the pile and pile stress under three calculation conditions,i.e.,not considering groundwater effect,considering stable groundwater effect and fluid-soil interaction.The results show that the calculated value is small when the effect of groundwater is not considered;the seepage velocity of the soil above the excavation face is faster than that of the surrounding soil under fluid-soil interaction,and after the shield passing,the groundwater on both sides shows a flow trend of“U”shape on the ground surface supplying to the upper part of the tunnel;the vertical displacement of the pile body is bounded by the horizontal position of the top of the tunnel,the upper pile body settles,and the lower pile body deforms upward.The horizontal displacement of pile body presents a continuous“S”shape distribution,causing stress concentration near the tunnel.The calculated results of fluid-soil interaction are in good agreement with the field measured data and accord with the actual situation.展开更多
Bridges are a part of vital infrastructure,which should operate even after a disaster to keep emergency services running.There have been numerous bridge failures during major past earthquakes due to liquefaction.Among...Bridges are a part of vital infrastructure,which should operate even after a disaster to keep emergency services running.There have been numerous bridge failures during major past earthquakes due to liquefaction.Among other categories of failures,mid span collapse(without the failure of abutments)of pile supported bridges founded in liquefiable deposits are still observed even in most recent earthquakes.This mechanism of collapse is attributed to the effects related to the differential elongation of natural period of the individual piers during liquefaction.A shake table investigation has been carried out in this study to verify mechanisms behind midspan collapse of pile supported bridges in liquefiable deposits.In this investigation,a typical pile supported bridge is scaled down,and its foundations pass through the liquefiable loose sandy soil and rest in a dense gravel layer.White noise motions of increasing acceleration magnitude have been applied to initiate progressive liquefaction and to characterize the dynamic features of the bridge.It has been found that as the liquefaction of the soil sets in,the natural frequency of individual bridge support is reduced,with the highest reduction occurring near the central spans.As a result,there is differential lateral displacement and bending moment demand on the piles.It has also been observed that for the central pile,the maximum bending moment in the pile will occur at a higher elevation,as compared to that of the interface of soils of varied stiffness,unlike the abutment piles.The practical implications of this research are also highlighted.展开更多
The process and characteristics of loading on high-speed railway bridge pile foundation were firstly obtained by means of field research and analysis,and the corresponding loading function was presented.One-dimensiona...The process and characteristics of loading on high-speed railway bridge pile foundation were firstly obtained by means of field research and analysis,and the corresponding loading function was presented.One-dimensional consolidation equation of elastic multilayered soils was then established with single drainage or double drainages under multilevel loading.Moreover,the formulas for calculating effective stress and settlement were derived from the Laplace numerical inversion transform.The three-dimensional composite analysis method of bridge pile group was improved,where the actual load conditions of pile foundation could be simulated,and the consolidation characteristics of soil layers beneath pile were also taken into account.Eventually,a corresponding program named LTPGS was developed to improve the calculation efficiency.The comparison between long-term settlement obtained from the proposed method and the in-situ measurements of pile foundation was illustrated,and a close agreement is obtained.The error between computed and measured results is less than 1 mm,and it gradually reduces with time.It is shown that the proposed method can effectively simulate the long-term settlement of pile foundation and program LTPGS can provide a reliable estimation.展开更多
Moving ships and other objects drifting on water often impact a bridge' s pile foundations. The mechanical model of the piles-bridge structure under horizontal forcing was established, and a time-domain approach b...Moving ships and other objects drifting on water often impact a bridge' s pile foundations. The mechanical model of the piles-bridge structure under horizontal forcing was established, and a time-domain approach based on Finite-difference Method was developed for analyzing the dynamic response of the piles-bridge structure. For a single pile, good agreement between two computed results validated the present approach.The slenderness ratio of the pile, the pile-soil stiffness ratio and the type of the structure influence the dynamic response of the piles-bridge structure. The computed results showed that the stiffness of the structure determines the dynamic response of the piles-bridge structure under horizontal forcing.展开更多
Similar to free-standing pile groups, piled raft foundations are conventionally designed in which the piles carry the total load of structure and the raft bearing capacity is not taken into account. Numerous studies i...Similar to free-standing pile groups, piled raft foundations are conventionally designed in which the piles carry the total load of structure and the raft bearing capacity is not taken into account. Numerous studies indicated that this method is too conservative. Only when the pile cap is elevated from the ground level,the raft bearing contribution can be neglected. In a piled raft foundation, pileesoileraft interaction is complicated. Although several numerical studies have been carried out to analyze the behaviors of piled raft foundations, very few experimental studies are reported in the literature. The available laboratory studies mainly focused on steel piles. The present study aims to compare the behaviors of piled raft foundations with free-standing pile groups in sand, using laboratory physical models. Cast-in-place concrete piles and concrete raft are used for the tests. The tests are conducted on single pile, single pile in pile group, unpiled raft, free-standing pile group and piled raft foundation. We examine the effects of the number of piles, the pile installation method and the interaction between different components of foundation. The results indicate that the ultimate bearing capacity of the piled raft foundation is considerably higher than that of the free-standing pile group with the same number of piles. With installation of the single pile in the group, the pile bearing capacity and stiffness increase. Installation of the piles beneath the raft decreases the bearing capacity of the raft. When the raft bearing capacity is not included in the design process, the allowable bearing capacity of the piled raft is underestimated by more than 200%. This deviation intensifies with increasing spacing of the piles.展开更多
Based on the requirement of seismic reinforcement of bridge foundation on slope in the Chengdu-Lanzhou railway project,a shaking table model test of anti-slide pile protecting bridge foundation in landslide section is...Based on the requirement of seismic reinforcement of bridge foundation on slope in the Chengdu-Lanzhou railway project,a shaking table model test of anti-slide pile protecting bridge foundation in landslide section is designed and completed. By applying Wenchuan seismic waves with different acceleration peaks,the stress and deformation characteristics of bridge pile foundation and anti-slide pile are analyzed,and the failure mode is discussed. Results show that the dynamic response of bridge pile and anti-slide pile are affected by the peak value of seismic acceleration of earthquake,with which the stress and deformation of the structure increase. The maximum dynamic earth pressure and the moment of anti-slide piles are located near the sliding surface,while that of bridge piles are located at the top of the pile. Based on the dynamic response of structure,local reinforcement needs to be carried out to meet the requirement of the seismic design. The PGA amplification factor of the surface is greater than the inside,and it decreases with the increase of the input seismic acceleration peak. When the slope failure occurs,the tension cracks are mainly produced in the shallow sliding zone and the coarse particles at the foot of the slope are accumulated.展开更多
With the rapid development of my country’s economy, the demand for infrastructure construction is also increasing. However, in most areas of China, the terrains are mountainous and hilly. Some projects have to be bui...With the rapid development of my country’s economy, the demand for infrastructure construction is also increasing. However, in most areas of China, the terrains are mountainous and hilly. Some projects have to be built on steep slopes. Choosing viaducts or half-bridges on high-steep slopes is not only conducive to the protection of the surrounding environment, but also conducive to the stability of the slope. Bridges usually choose the form of pile </span><span style="font-family:Verdana;">foundation-high pier bridge. This paper uses numerical simulation to study and analyze the bridge pile foundation of the slope section. Relying on actual</span><span style="font-family:Verdana;"> engineering, use the finite element software ABAQUS6.14 to establish a three-dimensional finite element model to study the bearing mechanism and mechanical characteristics of the pile foundation under vertical load, horizontal load and inclined load, discuss the influence of the nature of the soil around the pile and the stiffness of the pile body on the deformation and internal force of the bridge pile foundation in the slope section. The analysis results show that the horizontal load has a great influence on the horizontal displacement of the pile, but has a small influence on the vertical displacement, and the vertical load is just the opposite. Inclined load has obvious “p-Δ” effect. The increase in soil elastic modulus and pile stiffness will reduce the displacement of the pile foundation, but after reaching a certain range, the displacement of the pile foundation will tend to be stable. Therefore, in actual engineering, if the displacement of the pile foundation fails to meet the requirements, the hardness of the soil and the stiffness of the pile can be appropriately increased, but not blindly.展开更多
This paper is based on the analysis of an industrial factory building to the bridge pile foundation construction stability, and it researches the influence of a new building to the bridge pile foundation internal forc...This paper is based on the analysis of an industrial factory building to the bridge pile foundation construction stability, and it researches the influence of a new building to the bridge pile foundation internal force by the finite element analysis software ANSYS. By calculating the changes of displacement and internal force of the bridge pile foundation, the deformation can be better controlled. Furthermore, comparing the data of numerical analysis with one of monitor measurements, we conclude that a new building has a small influence on the deformation under load action and the stress variation of a bridge pile foundation. That is to say, the bridge pile foundation is safe and stable under load action.展开更多
In the process of piling ,there are many various defects in foundation pile of bridge such as mud-bearing,sediment-bearing, isolation, honeycomb, broken piles, and so on, showing physical and mechanical features of lo...In the process of piling ,there are many various defects in foundation pile of bridge such as mud-bearing,sediment-bearing, isolation, honeycomb, broken piles, and so on, showing physical and mechanical features of low-density and low-intensity. In fact, by using the comprehensive detection of acoustic transmission method, the reflected wave method as well as drill coring sample method, and the rational utilization of engineering geological condition in field, the characteristics, size and location of common defects of foundation pile of bridge can be accurately detected and judged and the integrity of piles and the quality of concrete can be impersonally estimated.comprehensive detecting and analyzing methods on this kind of piles are introduced briefly. The physical characters of defects and basic features of detecting curves and their corresponding relation are emphasized, and causes are analyzed in in detail in this paper.展开更多
The soil-pile-bridge interaction of super-large pile groups is a very complex issue for the design of deep pile group foundations. In this paper, the load distribution on the pile top of a super large bridge foundatio...The soil-pile-bridge interaction of super-large pile groups is a very complex issue for the design of deep pile group foundations. In this paper, the load distribution on the pile top of a super large bridge foundation and its influential factors are analyzed comprehensively using a three-dimensional elasto-plastic finite element method. The adopted model and its input parameters are firstly verified by comparing the numerical results with the measured data of static loading tests of a single pile. Numerical analysis is then performed to investigate the load distribution and the load-settlement characteristics of super-large pile groups, and the models are verified using centrifuge laboratory model testing data. The mechanism of the interaction between pile groups and soil under different conditions is explored.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.42071095)the Program of the State Key Laboratory of Frozen Soil Engineering(Grant No.SKLFSE-ZQ-59)+1 种基金the Science and Technology Project of Gansu Province(Grant No.22JR5RA086)the Science and Technology Research and Development Program of the Qinghai-Tibet Group Corporation(Grant No.QZ2022-G02).
文摘During the construction of cast-in-place piles in warm permafrost,the heat carried by concrete and the cement hydration reaction can cause strong thermal disturbance to the surrounding permafrost.Since the bearing capacity of the pile is quite small before the full freeze-back,the quick refreezing of the native soils surrounding the cast-in-place pile has become the focus of the infrastructure construction in permafrost.To solve this problem,this paper innovatively puts forward the application of the artificial ground freezing(AGF)method at the end of the curing period of cast-in-place piles in permafrost.A field test on the AGF was conducted at the Beiluhe Observation and Research Station of Frozen Soil Engineering and Environment(34°51.2'N,92°56.4'E)in the Qinghai Tibet Plateau(QTP),and then a 3-D numerical model was established to investigate the thermal performance of piles using AGF under different engineering conditions.Additionally,the long-term thermal performance of piles after the completion of AGF under different conditions was estimated.Field experiment results demonstrate that AGF is an effective method to reduce the refreezing time of the soil surrounding the piles constructed in permafrost terrain,with the ability to reduce the pile-soil interface temperatures to below the natural ground temperature within 3 days.Numerical results further prove that AGF still has a good cooling effect even under unfavorable engineering conditions such as high pouring temperature,large pile diameter,and large pile length.Consequently,the application of this method is meaningful to save the subsequent latency time and solve the problem of thermal disturbance in pile construction in permafrost.The research results are highly relevant for the spread of AGF technology and the rapid building of pile foundations in permafrost.
文摘Urban infrastructure has become more complex with the rapid development of urban transportation networks.In urban environments with limited space,construction of facilities like subways and bridges may mutually influence each other,especially when subway construction requires passing under bridges.In such cases,pile foundation replacement technology is often necessary.However,this technology is highly specialized,with a lengthy and risky construction period,and high costs.Personnel must be proficient in key technical aspects to ensure construction quality.This article discusses the technical principle,construction process,and core technology of pile foundation replacement,along with the application of this technology in subway tunnel crossing bridge projects,supported by engineering examples for reference.
基金Sichuan Science and Technology Program under Grant No.2023NSFSC0894Major Project of the Science and Technology Research and Development Program of the Ministry of Railways of China under Grant No.Z2012-061。
文摘A shaking table test for a bridge foundation reinforced by anti-slide piles on a silty clay landslide model with an inclined interlayer was performed.The deformation characteristics of the bridge foundation piles and anti-slide piles were analyzed in different loading conditions.The dynamic response law of a silty clay landslide with an inclined interlayer was summarized.The spacing between the rear anti-slide piles and bridge foundation should be reasonably controlled according to the seismic fortification requirements,to avoid the two peaks in the forced deformation of the bridge foundation piles.The“blocking effect”of the bridge foundation piles reduced the deformation of the forward anti-slide piles.The stress-strain response of silty clay was intensified as the vibration wave field appeared on the slope.Since the vibration intensified,the thrust distribution of the landslide underwent a process of shifting from triangle to inverted trapezoid,the difference in the acceleration response between the bearing platform and silty clay landslide tended to decrease,and the spectrum amplitude near the natural vibration frequency increased.The rear anti-slide piles were able to slow down the shear deformation of the soil in front of the piles and avoid excessive acceleration response of the bridge foundation piles.
基金supported by the Natural Science Foundation of China (Grants No.41101065)the State Key Laboratory of Frozen Soil Engineering Funds (SKLFSE-ZT-34,SKLFSE-ZQ-202103).
文摘The bearing capacity of pile foundations is affected by the temperature of the frozen soil around pile foundations.The construction process and the hydration heat of cast-in-place(CIP)pile foundations affect the thermal stability of permafrost.In this paper,temperature data from inside multiple CIP piles,borehole observations of ground thermal status adjacent to the foundations and local weather stations were monitored in warm permafrost regions to study the thermal influence process of CIP pile foundations.The following conclusions are drawn from the field observation data.(1)The early temperature change process of different CIP piles is different,and the differences gradually diminish over time.(2)The initial concrete temperature is linearly related with the air temperature,net radiation and wind speed within 1 h before the completion of concrete pouring;the contributions of the air temperature,net radiation,and wind speed to the initial concrete temperature are 51.9%,20.3%and 27.9%,respectively.(3)The outer boundary of the thermal disturbance annulus is approximately 2 m away from the pile center.It took more than 224 days for the soil around the CIP piles to return to the natural permafrost temperature at the study site.
文摘In order to improve the quality of bored piles in bridge construction and ensure the overall quality of the bridge,we analyzed a series of problems in the construction process of bored piles,then propose corresponding quality control measures,in hopes of improving quality control of bored piles in bridge construction in our country.
文摘In this paper,the application strategy of ultrasonic detection technology in the detection of concrete foundation piles is analyzed using a construction project as an example.It includes a basic overview of the project,an overview of ultrasonic testing technology in bridge concrete pile foundation testing,and an analysis of its practical application in the concrete pile foundation testing of this project.The objective of this analysis is to provide some reference for the application of ultrasonic testing technology and the improvement of the quality of bridge concrete pile foundation testing.
基金supported by the National Natural Science Foundation of China(52001267)Tianjin Port Engineering Institute Co.,Ltd.,and Eunsung O&C Offshore Marine and Construction(EUNSUNG19EG01).
文摘The Hong Kong–Zhuhai–Macao Bridge(HZMB)involved the installation of 120 mega-cylinders with a diameter of 22 m,weights up to 513 t,and penetration depths up to 33 m using an eight-vibratory hammer group.Due to the lack of engineering experience on the drivability of large-diameter cylinders under multiple vibratory hammers,predicting the penetration rate and time of steel cylinders is an open challenge that has a considerable impact on the construction control of the HZMB.In this study,the vibratory penetration of large-diameter steel cylinders in the HZMB is investigated based on geological surveys,field monitoring,and drivability analysis.The vibratory penetration rate,installation accuracy,and dynamic responses of the steel cylinders at both the eastern and western artificial islands are analyzed.The dynamic soil resistance has a great influence on the cylinder drivability.However,the current design methods for estimating the vibratory driving soil resistance are proven inaccurate without considering the scale effects.Therefore,a modified method with a normalized effective area ratio A_(r,eff)is proposed in this study to calculate the vibratory soil resistance for open-ended thin-wall cylinders under unplugged conditions.Considering the scale effects on the vibratory driving soil resistance,the proposed method leads to closer results to the measured data,providing a reference for future engineering practice.
基金Major Research Plan of National Natural Science Foundation of China Under Grant No.90815009National Natural Science Foundation of China Under Grant No.50378031 and 50178027Western Transport Construction Technology Projects Under Grant No.2009318000100
文摘This paper describes a shake table test study on the seismic response of low-cap pile groups and a bridge structure in liquefiable ground. The soil profile, contained in a large-scale laminar shear box, consisted of a horizontally saturated sand layer overlaid with a silty clay layer, with the simulated low-cap pile groups embedded. The container was excited in three E1 Centro earthquake events of different levels. Test results indicate that excessive pore pressure (EPP) during slight shaking only slightly accumulated, and the accumulation mainly occurred during strong shaking. The EPP was gradually enhanced as the amplitude and duration of the input acceleration increased. The acceleration response of the sand was remarkably influenced by soil liquefaction. As soil liquefaction occurred, the peak sand displacement gradually lagged behind the input acceleration; meanwhile, the sand displacement exhibited an increasing effect on the bending moment of the pile, and acceleration responses of the pile and the sand layer gradually changed from decreasing to increasing in the vertical direction from the bottom to the top. A jump variation of the bending moment on the pile was observed near the soil interface in all three input earthquake events. It is thought that the shake table tests could provide the groundwork for further seismic performance studies of low-cap pile groups used in bridges located on liquefiable groun.
基金supported by the National Key Basic Research Program of China (973 Program) (No.2012CB026106)the National Natural Science Foundation of China (Grant No. 41171059)the Fund of the State Key Laboratory of Frozen Soil Engineering (No. SKLFSE-ZY-16)
文摘In the construction of the Qinghai-Tibet Power Transmission Line (QTPTL), cast-in-place piles (CIPPs) are widely applied in areas with unfavorable geological conditions. The thermal regime around piles in permafrost regions greatly affects the stability of the towers as well as the operation of the QTPTL. The casting of piles will markedly affect the thermal regime of the surrounding permafrost because of the casting temperature and the hydration heat of cement. Based on the typical geological and engineering conditions along the QTPTL, thermal disturbance ofa CIPP to surrounding permafrost under different casting seasons, pile depths, and casting temperatures were simulated. The results show that the casting season (summer versus winter) can influence the refreezing process of CIPPs, within the first 6 m of pile depth. Sixty days after being cast, CIPPs greater than 6 m in depth can be frozen regardless of which season they were cast, and the foundation could be reffozen after a cold season. Comparing the refreezing characteristics of CIPPs cast in different seasons also showed that, without considering the ground surface conditions, warm seasons are more suitable for casting piles. With the increase of pile depth, the thermal effect of a CIPP on the surrounding soil mainly expands vertically, while the lateral heat disturbance changes little. Deeper, longer CIPPs have better stability. The casting temperature clearly affects the thermal disturbance, and the radius of the melting circle increases with rising casting temperature. The optimal casting temperature is between 2 ℃ and 9 ℃.
基金Projects(2009G008-B,2010G018-E-3) supported by Key Projects of China Railway Ministry Science and Technology Research and Development ProgramProject(CX2013B076) supported by Hunan Provincial Innovation Foundation For Postgraduate,China
文摘Based on reasonable assumptions that simplified the calculational model,a simple and practical method was proposed to calculate the post-construction settlement of high-speed railway bridge pile foundation by using the Mesri creep model to describe the soil characteristics and the Mindlin-Geddes method considering pile diameter to calculate the vertical additional stress of pile bottom.A program named CPPS was designed for this method to calculate the post-construction settlement of a high-speed railway bridge pile foundation.The result indicates that the post-construction settlement in 100 years meets the requirements of the engineering specifications,and in the first two decades,the post-construction settlement is about 80% of its total settlement,while the settlement in the rest eighty years tends to be stable.Compared with the measured settlement after laying railway tracks,the calculational result is closed to that of the measured,and the results are conservative with a high computational accuracy.It is noted that the method can be used to calculate the post-construction settlement for the preliminary design of high-speed railway bridge pile foundation.
基金Project(52078060)supported by the National Natural Science Foundation of ChinaProject(2020JJ4606)supported by the National Science Foundation of Hunan Province,China+1 种基金Project(18A127)supported by the Key Foundation of Education Department of Hunan Province,ChinaProject(2018IC19)supported by the International Cooperation and Development Project of Double-First-Class Scientific Research in Changsha University of Science&Technology,China。
文摘At present,shield tunneling often needs to pass through a large number of bridge pile foundations.However,there are few studies on the influence of shield tunneling on adjacent pile foundations by combining with groundwater seepage.Based on Winkler model,the calculation equations of shield tunneling on vertical and horizontal displacement of adjacent bridge pile are derived.Meanwhile,full and part three-dimensional finite element models are established to analyze the trend of bridge pier settlement,ground surface settlement trough,vertical and horizontal displacement of the pile and pile stress under three calculation conditions,i.e.,not considering groundwater effect,considering stable groundwater effect and fluid-soil interaction.The results show that the calculated value is small when the effect of groundwater is not considered;the seepage velocity of the soil above the excavation face is faster than that of the surrounding soil under fluid-soil interaction,and after the shield passing,the groundwater on both sides shows a flow trend of“U”shape on the ground surface supplying to the upper part of the tunnel;the vertical displacement of the pile body is bounded by the horizontal position of the top of the tunnel,the upper pile body settles,and the lower pile body deforms upward.The horizontal displacement of pile body presents a continuous“S”shape distribution,causing stress concentration near the tunnel.The calculated results of fluid-soil interaction are in good agreement with the field measured data and accord with the actual situation.
文摘Bridges are a part of vital infrastructure,which should operate even after a disaster to keep emergency services running.There have been numerous bridge failures during major past earthquakes due to liquefaction.Among other categories of failures,mid span collapse(without the failure of abutments)of pile supported bridges founded in liquefiable deposits are still observed even in most recent earthquakes.This mechanism of collapse is attributed to the effects related to the differential elongation of natural period of the individual piers during liquefaction.A shake table investigation has been carried out in this study to verify mechanisms behind midspan collapse of pile supported bridges in liquefiable deposits.In this investigation,a typical pile supported bridge is scaled down,and its foundations pass through the liquefiable loose sandy soil and rest in a dense gravel layer.White noise motions of increasing acceleration magnitude have been applied to initiate progressive liquefaction and to characterize the dynamic features of the bridge.It has been found that as the liquefaction of the soil sets in,the natural frequency of individual bridge support is reduced,with the highest reduction occurring near the central spans.As a result,there is differential lateral displacement and bending moment demand on the piles.It has also been observed that for the central pile,the maximum bending moment in the pile will occur at a higher elevation,as compared to that of the interface of soils of varied stiffness,unlike the abutment piles.The practical implications of this research are also highlighted.
基金Project(2012QNZT050)supported by the Special Fund for Basic Scientific Research of Central Colleges,ChinaProjects(51208518,U1361204,51208519,51108464)supported by the National Natural Science Foundation of China+1 种基金Project supported by the Postdoctoral Foundation of Central South University,ChinaProjects(2013RS4030,2012RS4002)sponsored by Hunan Postdoctoral Scientific Program,China
文摘The process and characteristics of loading on high-speed railway bridge pile foundation were firstly obtained by means of field research and analysis,and the corresponding loading function was presented.One-dimensional consolidation equation of elastic multilayered soils was then established with single drainage or double drainages under multilevel loading.Moreover,the formulas for calculating effective stress and settlement were derived from the Laplace numerical inversion transform.The three-dimensional composite analysis method of bridge pile group was improved,where the actual load conditions of pile foundation could be simulated,and the consolidation characteristics of soil layers beneath pile were also taken into account.Eventually,a corresponding program named LTPGS was developed to improve the calculation efficiency.The comparison between long-term settlement obtained from the proposed method and the in-situ measurements of pile foundation was illustrated,and a close agreement is obtained.The error between computed and measured results is less than 1 mm,and it gradually reduces with time.It is shown that the proposed method can effectively simulate the long-term settlement of pile foundation and program LTPGS can provide a reliable estimation.
文摘Moving ships and other objects drifting on water often impact a bridge' s pile foundations. The mechanical model of the piles-bridge structure under horizontal forcing was established, and a time-domain approach based on Finite-difference Method was developed for analyzing the dynamic response of the piles-bridge structure. For a single pile, good agreement between two computed results validated the present approach.The slenderness ratio of the pile, the pile-soil stiffness ratio and the type of the structure influence the dynamic response of the piles-bridge structure. The computed results showed that the stiffness of the structure determines the dynamic response of the piles-bridge structure under horizontal forcing.
文摘Similar to free-standing pile groups, piled raft foundations are conventionally designed in which the piles carry the total load of structure and the raft bearing capacity is not taken into account. Numerous studies indicated that this method is too conservative. Only when the pile cap is elevated from the ground level,the raft bearing contribution can be neglected. In a piled raft foundation, pileesoileraft interaction is complicated. Although several numerical studies have been carried out to analyze the behaviors of piled raft foundations, very few experimental studies are reported in the literature. The available laboratory studies mainly focused on steel piles. The present study aims to compare the behaviors of piled raft foundations with free-standing pile groups in sand, using laboratory physical models. Cast-in-place concrete piles and concrete raft are used for the tests. The tests are conducted on single pile, single pile in pile group, unpiled raft, free-standing pile group and piled raft foundation. We examine the effects of the number of piles, the pile installation method and the interaction between different components of foundation. The results indicate that the ultimate bearing capacity of the piled raft foundation is considerably higher than that of the free-standing pile group with the same number of piles. With installation of the single pile in the group, the pile bearing capacity and stiffness increase. Installation of the piles beneath the raft decreases the bearing capacity of the raft. When the raft bearing capacity is not included in the design process, the allowable bearing capacity of the piled raft is underestimated by more than 200%. This deviation intensifies with increasing spacing of the piles.
基金sponsored by the National Natural Science Foundation of China(51578467)
文摘Based on the requirement of seismic reinforcement of bridge foundation on slope in the Chengdu-Lanzhou railway project,a shaking table model test of anti-slide pile protecting bridge foundation in landslide section is designed and completed. By applying Wenchuan seismic waves with different acceleration peaks,the stress and deformation characteristics of bridge pile foundation and anti-slide pile are analyzed,and the failure mode is discussed. Results show that the dynamic response of bridge pile and anti-slide pile are affected by the peak value of seismic acceleration of earthquake,with which the stress and deformation of the structure increase. The maximum dynamic earth pressure and the moment of anti-slide piles are located near the sliding surface,while that of bridge piles are located at the top of the pile. Based on the dynamic response of structure,local reinforcement needs to be carried out to meet the requirement of the seismic design. The PGA amplification factor of the surface is greater than the inside,and it decreases with the increase of the input seismic acceleration peak. When the slope failure occurs,the tension cracks are mainly produced in the shallow sliding zone and the coarse particles at the foot of the slope are accumulated.
文摘With the rapid development of my country’s economy, the demand for infrastructure construction is also increasing. However, in most areas of China, the terrains are mountainous and hilly. Some projects have to be built on steep slopes. Choosing viaducts or half-bridges on high-steep slopes is not only conducive to the protection of the surrounding environment, but also conducive to the stability of the slope. Bridges usually choose the form of pile </span><span style="font-family:Verdana;">foundation-high pier bridge. This paper uses numerical simulation to study and analyze the bridge pile foundation of the slope section. Relying on actual</span><span style="font-family:Verdana;"> engineering, use the finite element software ABAQUS6.14 to establish a three-dimensional finite element model to study the bearing mechanism and mechanical characteristics of the pile foundation under vertical load, horizontal load and inclined load, discuss the influence of the nature of the soil around the pile and the stiffness of the pile body on the deformation and internal force of the bridge pile foundation in the slope section. The analysis results show that the horizontal load has a great influence on the horizontal displacement of the pile, but has a small influence on the vertical displacement, and the vertical load is just the opposite. Inclined load has obvious “p-Δ” effect. The increase in soil elastic modulus and pile stiffness will reduce the displacement of the pile foundation, but after reaching a certain range, the displacement of the pile foundation will tend to be stable. Therefore, in actual engineering, if the displacement of the pile foundation fails to meet the requirements, the hardness of the soil and the stiffness of the pile can be appropriately increased, but not blindly.
文摘This paper is based on the analysis of an industrial factory building to the bridge pile foundation construction stability, and it researches the influence of a new building to the bridge pile foundation internal force by the finite element analysis software ANSYS. By calculating the changes of displacement and internal force of the bridge pile foundation, the deformation can be better controlled. Furthermore, comparing the data of numerical analysis with one of monitor measurements, we conclude that a new building has a small influence on the deformation under load action and the stress variation of a bridge pile foundation. That is to say, the bridge pile foundation is safe and stable under load action.
文摘In the process of piling ,there are many various defects in foundation pile of bridge such as mud-bearing,sediment-bearing, isolation, honeycomb, broken piles, and so on, showing physical and mechanical features of low-density and low-intensity. In fact, by using the comprehensive detection of acoustic transmission method, the reflected wave method as well as drill coring sample method, and the rational utilization of engineering geological condition in field, the characteristics, size and location of common defects of foundation pile of bridge can be accurately detected and judged and the integrity of piles and the quality of concrete can be impersonally estimated.comprehensive detecting and analyzing methods on this kind of piles are introduced briefly. The physical characters of defects and basic features of detecting curves and their corresponding relation are emphasized, and causes are analyzed in in detail in this paper.
基金Funded by the National Natural Science Foundation of China(No.41372276)
文摘The soil-pile-bridge interaction of super-large pile groups is a very complex issue for the design of deep pile group foundations. In this paper, the load distribution on the pile top of a super large bridge foundation and its influential factors are analyzed comprehensively using a three-dimensional elasto-plastic finite element method. The adopted model and its input parameters are firstly verified by comparing the numerical results with the measured data of static loading tests of a single pile. Numerical analysis is then performed to investigate the load distribution and the load-settlement characteristics of super-large pile groups, and the models are verified using centrifuge laboratory model testing data. The mechanism of the interaction between pile groups and soil under different conditions is explored.