Bridges are omnipresent in every society and they affect its human, social, ecological, economical and cultural aspects. This is why a durable and safe usage of bridges is an imperative goal of structural management. ...Bridges are omnipresent in every society and they affect its human, social, ecological, economical and cultural aspects. This is why a durable and safe usage of bridges is an imperative goal of structural management. Measurement and monitoring have an essential role in structural management. The benefits of the information obtained by monitoring are apparent in several domains. In deformation analysis, the functional relationship between the acting forces and the resulting deformations should be established. If time depending observations are given, a regression could be used as a functional model. In case of stochastic model uncorrelated observations with identical variance are assumed. Due to the high sampling rate, a small time difference arises between two observations. Thus the assumed stochastic model is not suitable. The calculation has to be effected by means of auto-correlated observations. This paper investigates an integrated monitoring system for the estimation of the deformation (i.e., static, quasi-static) behavior of bridges from total station observations and studies the effect of autocorrelation technique on the accuracy of the estimated parameters and variances. The results have shown that autocorrelation technique is reduced the standard deviation of X&Y-direction about 6.7% to 29.4% and 6.5% to 15.5% of the original value, respectively, but the situation was differ in Z direction;the standard deviation in vertical component Z was increased.展开更多
To study on the numerical simulation calculation reliability of sea-crossing bridge under complex wave forces,the paper applied GPS deformation monitoring and numerical simulation calculation by researching Qingdao Ji...To study on the numerical simulation calculation reliability of sea-crossing bridge under complex wave forces,the paper applied GPS deformation monitoring and numerical simulation calculation by researching Qingdao Jiaozhou Bay Sea-Crossing Bridge.The db3 wavelet three-layer decomposition was used on the horizontal movement of the sea-crossing bridge and the wind speed of the waves to analyze their correlation.The complex wave forces value of Qingdao Jiaozhou Bay Sea-Crossing Bridge was loaded on FLAC3D software successfully to make numerical simulation calculation of bridge deformation.Since the accuracy of the GPS deformation monitoring reaches millimeter level,it was used to monitor the exact value of the bridge deformation to judge the reliability of numerical simulation.The relative errors of displacement in X,Y and Z directions were between 33%and 41%through comparison.It could be seen that the numerical simulation error was relatively large,which was mainly due to various environmental factors and the deviation of applied wave forces.However,numerical simulation generally reflects the deformation law of the sea-crossing bridge under complex wave forces,providing an effectively technical support for the safe operation assessment of the sea-crossing bridge.展开更多
The deformation monitoring of long-span railway bridges is significant to ensure the safety of human life and property.The interferometric synthetic aperture radar(In SAR)technology has the advantage of high accuracy ...The deformation monitoring of long-span railway bridges is significant to ensure the safety of human life and property.The interferometric synthetic aperture radar(In SAR)technology has the advantage of high accuracy in bridge deformation monitoring.This study monitored the deformation of the Ganjiang Super Bridge based on the small baseline subsets(SBAS)In SAR technology and Sentinel-1A data.We analyzed the deformation results combined with bridge structure,temperature,and riverbed sediment scouring.The results are as follows:(1)The Ganjiang Super Bridge area is stable overall,with deformation rates ranging from-15.6 mm/yr to 10.7 mm/yr(2)The settlement of the Ganjiang Super Bridge deck gradually increases from the bridge tower toward the main span,which conforms to the typical deformation pattern of a cable-stayed bridge.(3)The sediment scouring from the riverbed cause the serious settlement on the bridge’s east side compared with that on the west side.(4)The bridge deformation negatively correlates with temperature,with a faster settlement at a higher temperature and a slow rebound trend at a lower temperature.The study findings can provide scientific data support for the health monitoring of long-span railway bridges.展开更多
The measurements and analysis of deformation of engineering structures such as dams, bridges and high-rise buildings are important tasks for civil engineers. It is evident that, all civil engineering structures are su...The measurements and analysis of deformation of engineering structures such as dams, bridges and high-rise buildings are important tasks for civil engineers. It is evident that, all civil engineering structures are susceptible for deterioration over a period of time. Bridges in particular, deteriorate due to loading conditions, environmental changes, earth movement, material used during construction, age and corrosion of steel. Continuous monitoring of such structure is the most important aspect as it provides quantitative information, assesses the state of the structure, detects unsafe positions and proposes early safety measures to be taken before it can threaten the safety of vehicles, goods and human life. Despite government’s efforts to construct roads and highways, bridge deformation monitoring has not been given priority in most of African countries and ultimately causes some bridges to collapse unexpectedly. The purpose of this research is to integrate Global Positioning System (GPS) and Linear Variable Differential Transducers (LVDT) to monitor deformation of a bridge. The horizontal positions of reference and monitoring points were determined using Global Positioning System (GPS) while the vertical deflections, accelerations and strain were determined using Linear Variable Differential Transducers (LVDT). The maximum displacements obtained between zero and first epochs in x, y and z components were 0.798 m, at point LT08, 0.865 m at point BR13, and 0.56 m at point LT02 respectively. The maximum deflections for LVDT 1, 2 and 3 are 28.563 mm, 31.883 mm and 40.926 mm respectively. Finally, the correlation coefficient for the observations was 0.679 with standard deviations of 0.0168 and 0.0254 in x and y respectively. Our results identified some slight displacements in horizontal components at the bridge.展开更多
Combining GPS and BDS technology to monitor the deformation of long-span railway bridges with stricter deformation control requirements is of significance to the safety and control of the bridge and the safety of rail...Combining GPS and BDS technology to monitor the deformation of long-span railway bridges with stricter deformation control requirements is of significance to the safety and control of the bridge and the safety of railway traffic.Previous studies have ignored the influence of coloured noise in the deformation time series.This is not conducive to accurate deformation analysis of long-span railway bridges.Therefore,GPS,BDS and GPS/BDS monitoring data of Ganjiang Bridge located in Ganzhou city,Jiangxi Province,China are adopted in this paper to filter the coloured noise in the deformation time series by principal component analysis(PCA),and the influence of coloured noise on the deformation analysis results of railway bridge is analysed.The experimental results show that the diurnal temperature difference causes the mid-span and the tower of the railway cable-stayed bridge to deform with a period of about one day in the vertical and longitudinal directions,respectively.Ignoring colored noise will make the uncertainty of the deformation parameter estimation overly optimistic.PCA can significantly reduce the coloured noise,and thus reduce the uncertainty of deformation parameter estimation by about 73%.Moreover,the average difference between the daily periodic motion amplitudes of the monitoring points obtained by using GPS and BDS deformation time series is 1.65 mm.The use of GPS/BDS deformation time series is not only helpful to reduce the influence of coloured noise,but also can reduce the difference between amplitude analysis results obtained from GPS and BDS deformation time series.展开更多
A real-time,long-round global positioning system (GPS) bridge-deformation monitoring technology was proposed,which processes the carrier phase of multiple GPS receivers in an operation center.It was demon- strated an ...A real-time,long-round global positioning system (GPS) bridge-deformation monitoring technology was proposed,which processes the carrier phase of multiple GPS receivers in an operation center.It was demon- strated an extended Kalman filter with triple differential ionospheric-free measurement (EKF-TIF) which can eliminate the ionospheric delay,whiten the TIF noise and optimize the results of EKF,consequently,achieves a better performance than existing real time kinematic (RTK) solution.An experiment,which takes an active ionosphere condition into consideration,proves the feasibility of this system by comparing its records to that of a traditional RTK solution,practically,the system installed on the Donghai Bridge has survived a non-break running for five months.The analysis to the monitoring records shows the system achieves the designed accu- racy and reliability.展开更多
Based on a large span continuous rigid frame bridge in Chongqing of China, the main pier vertical displacement and deviation, the bridge deck alignment and the expansion joint deformation are analytically researched d...Based on a large span continuous rigid frame bridge in Chongqing of China, the main pier vertical displacement and deviation, the bridge deck alignment and the expansion joint deformation are analytically researched during operation. Firstly, the monitoring content and method of the large span continuous rigid frame bridge are clearly stated. Secondly, by finite element software Midas Civil, the relevant deformation values of the bridge are calculated. Thirdly, in practice, the relevant deformation values of the bridge are measured. Finally, the measured values in practice are compared with the calculated ones by the finite element software Midas Civil, finding that the former is less than the latter, and it can be concluded that the bridge is basically in the normal working condition. In this paper, the analytical research on the deformation monitoring can provide the basis for similar bridges, which has good practical significance.展开更多
In order to investigate the feasibility of BDS/GPS in the deformation monitoring of long-span bridges,analysis and research on aspects like number of visible satellites,PDOP value and monitoring precision are carried ...In order to investigate the feasibility of BDS/GPS in the deformation monitoring of long-span bridges,analysis and research on aspects like number of visible satellites,PDOP value and monitoring precision are carried out. To analyze daily deformation characteristics of steel box girder bridge,observation data for 48 consecutive hours is computed by self-programmed software. Experiment results show that the monitoring-points on the bridge demonstrate obvious periodicity and recoverability in vertical and horizontal directions,meanwhile,changes in the elevation direction are relatively stable. The deformation-monitoring results of BDS/GPS combination system and GPS single system show good consistency. However,in a complex environment of the bridge,especially under the condition that satellite signals are severely affected,the advantages of BDS/GPS combination over GPS single system are more obvious.展开更多
As the new materials and technologies are increasingly applied to construction of civil infrastructures such bridges, dam and tunnels, the need for structural monitoring systems, maintenance and restoration becomes mo...As the new materials and technologies are increasingly applied to construction of civil infrastructures such bridges, dam and tunnels, the need for structural monitoring systems, maintenance and restoration becomes more important and vital. Bridges are widespread in every society and affect its human, social, economical and cultural aspects. Measurements and monitoring of the structural deformation of highway bridges have an essential role in structural safety. This paper investigates an integrated monitoring system for estimation of the deformation behavior of one of the important reinforced bridges in Egypt. The applied data for analysing the deformation of any structure from geodetic observations are the coordinates of several monitoring points distributed on the structure itself. The coordinates of these points are calculated with respect to control fixed points. So any deviations in the control points coordinates between the two successive epochs of observations will affect the values of structural deformation. To overcome this shortage, applying the multi-parameter transformation will be studied in this paper for structural health monitoring of bridges. Statistical tests using F-Fisher criterion with a confidence level of 98% of the geodetic observations for bridge deformation values are also presented. The results of the practical measurements, analysis of the interesting deformation technique and traffic flow around the studied highway bridge are also presented. The resulting structural deformation values from statistical tests provide a significant improvement of understanding and prediction the structure deformation values of highway bridges.展开更多
Construction progress of long-span bridge is complicated and the quality control is strict. Any disadvantage during construction may potentially affect the internal forces and deck alignments after it is open to traff...Construction progress of long-span bridge is complicated and the quality control is strict. Any disadvantage during construction may potentially affect the internal forces and deck alignments after it is open to traffic. To exactly evaluate the periodic alignments, internal forces and safety, geometrical and physical monitoring are needed during construction. This study aims at the requirement of dynamic geometric monitoring during Sutong Bridge construction, and introduces the realization and observing schemes of the self-developed GPS real-time dynamic geometrical deformation monitoring system. Affected by wind load and construction circumstance, GPS (global positioning system) monitoring signal contains a variety of noise. And the useful signal can be extracted from the signal after de-noising the noises. A de-noising method based on EMD (empirical mode decomposition) model is introduced here to process the bridge dynamic monitoring data, and with the wavelet threshold de-noising method are compared. The result shows that the EMD method has good adaptability, is free from the choice of wavelet bases and the number of decomposition layer. The method is an effective de-noising method for dynamic deformation monitoring to large-span bridges.展开更多
Bridge deformation monitoring usually adopts contact sensors,and the implementation process is often limited by the environment and observation conditions,resulting in unsatisfactory monitoring accuracy and effect.Gro...Bridge deformation monitoring usually adopts contact sensors,and the implementation process is often limited by the environment and observation conditions,resulting in unsatisfactory monitoring accuracy and effect.Ground-Based Synthetic Aperture Radar(GBSAR)combined with corner reflectors was used to perform static load-loaded deformation destruction experiments on solid model bridges in a non-contact manner.The semi parametric spline filtering and its optimization method were used to obtain the monitoring results of the GBSAR radar’s line of sight deformation,and the relative position of the corner reflector and the millimeter level deformation signals under different loading conditions were successfully extracted.The deformation transformation model from the radar line of sight direction to the vertical vibration direction was deduced.The transformation results of deformation monitoring and the measurement data such as the dial indicator were compared and analyzed.The occurrence and development process of bridge deformation and failure were successfully monitored,and the deformation characteristics of the bridge from continuous loading to eccentric loading until bridge failure were obtained.The experimental results show that GBSAR combined with corner reflector can be used for deformation feature acquisition,damage identification and health monitoring of bridges and other structures,and can provide a useful reference for design,construction and safety evaluation.展开更多
The positioning combined with multi-functioning and interactive mechanics in dynamic testing of slender bridges are treated in present paper. The approach takes into account multiple functions in dynamic testing of sl...The positioning combined with multi-functioning and interactive mechanics in dynamic testing of slender bridges are treated in present paper. The approach takes into account multiple functions in dynamic testing of slender bridges constructed of thin-walled structural members with their hierarchical configuration. Theoretical, numerical and experimental in situ assessments of the problem are presented. Some results of the application in situ are submitted.展开更多
以国内某高速铁路钢拱桥为研究对象,选取2017—2018年期间59幅C波段Senti⁃nel-1号雷达卫星影像,利用PS-InSAR技术处理影像获得桥梁的视线向(Line of Sight,LOS)位移,根据SAR成像空间几何关系解算出支座的纵向位移.研究结果表明:支座纵...以国内某高速铁路钢拱桥为研究对象,选取2017—2018年期间59幅C波段Senti⁃nel-1号雷达卫星影像,利用PS-InSAR技术处理影像获得桥梁的视线向(Line of Sight,LOS)位移,根据SAR成像空间几何关系解算出支座的纵向位移.研究结果表明:支座纵向位移的时空特性与实际桥梁结构相符合,验证了PS-InSAR技术观测桥梁结构位移的可行性.建立支座纵向位移与温度的线性相关模型,并与结构健康监测系统的实测结果进行对比.两者吻合良好,相对误差控制在10%以内,验证了PS-InSAR测量桥梁结构位移的可靠性.利用有限元模拟温度作用下桥梁支座的位移变化,并与PS-InSAR位移时间序列进行对比.两者趋势基本一致,LOS向位移误差在[-10,10]mm,验证了PS-InSAR测量桥梁结构位移的准确性.展开更多
文摘Bridges are omnipresent in every society and they affect its human, social, ecological, economical and cultural aspects. This is why a durable and safe usage of bridges is an imperative goal of structural management. Measurement and monitoring have an essential role in structural management. The benefits of the information obtained by monitoring are apparent in several domains. In deformation analysis, the functional relationship between the acting forces and the resulting deformations should be established. If time depending observations are given, a regression could be used as a functional model. In case of stochastic model uncorrelated observations with identical variance are assumed. Due to the high sampling rate, a small time difference arises between two observations. Thus the assumed stochastic model is not suitable. The calculation has to be effected by means of auto-correlated observations. This paper investigates an integrated monitoring system for the estimation of the deformation (i.e., static, quasi-static) behavior of bridges from total station observations and studies the effect of autocorrelation technique on the accuracy of the estimated parameters and variances. The results have shown that autocorrelation technique is reduced the standard deviation of X&Y-direction about 6.7% to 29.4% and 6.5% to 15.5% of the original value, respectively, but the situation was differ in Z direction;the standard deviation in vertical component Z was increased.
基金supported by the Natural Science Foundation of Shandong Province(No.ZR2020MD024)。
文摘To study on the numerical simulation calculation reliability of sea-crossing bridge under complex wave forces,the paper applied GPS deformation monitoring and numerical simulation calculation by researching Qingdao Jiaozhou Bay Sea-Crossing Bridge.The db3 wavelet three-layer decomposition was used on the horizontal movement of the sea-crossing bridge and the wind speed of the waves to analyze their correlation.The complex wave forces value of Qingdao Jiaozhou Bay Sea-Crossing Bridge was loaded on FLAC3D software successfully to make numerical simulation calculation of bridge deformation.Since the accuracy of the GPS deformation monitoring reaches millimeter level,it was used to monitor the exact value of the bridge deformation to judge the reliability of numerical simulation.The relative errors of displacement in X,Y and Z directions were between 33%and 41%through comparison.It could be seen that the numerical simulation error was relatively large,which was mainly due to various environmental factors and the deviation of applied wave forces.However,numerical simulation generally reflects the deformation law of the sea-crossing bridge under complex wave forces,providing an effectively technical support for the safe operation assessment of the sea-crossing bridge.
基金supported by the National Natural Science Foundation of China(Grant Nos.42264004,42274033,and 41904012)the Open Fund of Hubei Luojia Laboratory(Grant Nos.2201000049 and 230100018)+2 种基金the Guangxi Universities’1,000 Young and Middle-aged Backbone Teachers Training Program,the Fundamental Research Funds for Central Universities(Grant No.2042022kf1197)the Natural Science Foundation of Hubei(Grant No.2020CFB282)the China Postdoctoral Science Foundation(Grant Nos.2020T130482,2018M630879)。
文摘The deformation monitoring of long-span railway bridges is significant to ensure the safety of human life and property.The interferometric synthetic aperture radar(In SAR)technology has the advantage of high accuracy in bridge deformation monitoring.This study monitored the deformation of the Ganjiang Super Bridge based on the small baseline subsets(SBAS)In SAR technology and Sentinel-1A data.We analyzed the deformation results combined with bridge structure,temperature,and riverbed sediment scouring.The results are as follows:(1)The Ganjiang Super Bridge area is stable overall,with deformation rates ranging from-15.6 mm/yr to 10.7 mm/yr(2)The settlement of the Ganjiang Super Bridge deck gradually increases from the bridge tower toward the main span,which conforms to the typical deformation pattern of a cable-stayed bridge.(3)The sediment scouring from the riverbed cause the serious settlement on the bridge’s east side compared with that on the west side.(4)The bridge deformation negatively correlates with temperature,with a faster settlement at a higher temperature and a slow rebound trend at a lower temperature.The study findings can provide scientific data support for the health monitoring of long-span railway bridges.
文摘The measurements and analysis of deformation of engineering structures such as dams, bridges and high-rise buildings are important tasks for civil engineers. It is evident that, all civil engineering structures are susceptible for deterioration over a period of time. Bridges in particular, deteriorate due to loading conditions, environmental changes, earth movement, material used during construction, age and corrosion of steel. Continuous monitoring of such structure is the most important aspect as it provides quantitative information, assesses the state of the structure, detects unsafe positions and proposes early safety measures to be taken before it can threaten the safety of vehicles, goods and human life. Despite government’s efforts to construct roads and highways, bridge deformation monitoring has not been given priority in most of African countries and ultimately causes some bridges to collapse unexpectedly. The purpose of this research is to integrate Global Positioning System (GPS) and Linear Variable Differential Transducers (LVDT) to monitor deformation of a bridge. The horizontal positions of reference and monitoring points were determined using Global Positioning System (GPS) while the vertical deflections, accelerations and strain were determined using Linear Variable Differential Transducers (LVDT). The maximum displacements obtained between zero and first epochs in x, y and z components were 0.798 m, at point LT08, 0.865 m at point BR13, and 0.56 m at point LT02 respectively. The maximum deflections for LVDT 1, 2 and 3 are 28.563 mm, 31.883 mm and 40.926 mm respectively. Finally, the correlation coefficient for the observations was 0.679 with standard deviations of 0.0168 and 0.0254 in x and y respectively. Our results identified some slight displacements in horizontal components at the bridge.
基金the National Key Research and Development Program under Grant 2021YFB2600400the Science And Technology Project For China Railway Construction Corporation Limited under Grant 2022-A 02,Wuhan Enterprise Technology Innovation Project under Grant 2019010702011314+4 种基金Guangxi Science And Technology Plan Project under Grant AD19110107Guangxi Natural Science Foundation under Grant 2018GXNSFBA050006the Project To Improve The Basic Research Ability Of Young And MiddleAged Teachers In Guangxi Universities under Grant 2020KY06032Urban Spatial Information Engineering Beijing Key Laboratory Funded Project under Grant number 2020217Natural Science Foundation of Hubei Province under Grant 2020CFB282,National Natural Science Foundation of China under Grant 42264004.
文摘Combining GPS and BDS technology to monitor the deformation of long-span railway bridges with stricter deformation control requirements is of significance to the safety and control of the bridge and the safety of railway traffic.Previous studies have ignored the influence of coloured noise in the deformation time series.This is not conducive to accurate deformation analysis of long-span railway bridges.Therefore,GPS,BDS and GPS/BDS monitoring data of Ganjiang Bridge located in Ganzhou city,Jiangxi Province,China are adopted in this paper to filter the coloured noise in the deformation time series by principal component analysis(PCA),and the influence of coloured noise on the deformation analysis results of railway bridge is analysed.The experimental results show that the diurnal temperature difference causes the mid-span and the tower of the railway cable-stayed bridge to deform with a period of about one day in the vertical and longitudinal directions,respectively.Ignoring colored noise will make the uncertainty of the deformation parameter estimation overly optimistic.PCA can significantly reduce the coloured noise,and thus reduce the uncertainty of deformation parameter estimation by about 73%.Moreover,the average difference between the daily periodic motion amplitudes of the monitoring points obtained by using GPS and BDS deformation time series is 1.65 mm.The use of GPS/BDS deformation time series is not only helpful to reduce the influence of coloured noise,but also can reduce the difference between amplitude analysis results obtained from GPS and BDS deformation time series.
文摘A real-time,long-round global positioning system (GPS) bridge-deformation monitoring technology was proposed,which processes the carrier phase of multiple GPS receivers in an operation center.It was demon- strated an extended Kalman filter with triple differential ionospheric-free measurement (EKF-TIF) which can eliminate the ionospheric delay,whiten the TIF noise and optimize the results of EKF,consequently,achieves a better performance than existing real time kinematic (RTK) solution.An experiment,which takes an active ionosphere condition into consideration,proves the feasibility of this system by comparing its records to that of a traditional RTK solution,practically,the system installed on the Donghai Bridge has survived a non-break running for five months.The analysis to the monitoring records shows the system achieves the designed accu- racy and reliability.
文摘Based on a large span continuous rigid frame bridge in Chongqing of China, the main pier vertical displacement and deviation, the bridge deck alignment and the expansion joint deformation are analytically researched during operation. Firstly, the monitoring content and method of the large span continuous rigid frame bridge are clearly stated. Secondly, by finite element software Midas Civil, the relevant deformation values of the bridge are calculated. Thirdly, in practice, the relevant deformation values of the bridge are measured. Finally, the measured values in practice are compared with the calculated ones by the finite element software Midas Civil, finding that the former is less than the latter, and it can be concluded that the bridge is basically in the normal working condition. In this paper, the analytical research on the deformation monitoring can provide the basis for similar bridges, which has good practical significance.
基金Supported by the National Natural Science Foundation of China(No.41604018)Research Project of the Production and Research Institute of Jiangsu Province(No.2015002-04)
文摘In order to investigate the feasibility of BDS/GPS in the deformation monitoring of long-span bridges,analysis and research on aspects like number of visible satellites,PDOP value and monitoring precision are carried out. To analyze daily deformation characteristics of steel box girder bridge,observation data for 48 consecutive hours is computed by self-programmed software. Experiment results show that the monitoring-points on the bridge demonstrate obvious periodicity and recoverability in vertical and horizontal directions,meanwhile,changes in the elevation direction are relatively stable. The deformation-monitoring results of BDS/GPS combination system and GPS single system show good consistency. However,in a complex environment of the bridge,especially under the condition that satellite signals are severely affected,the advantages of BDS/GPS combination over GPS single system are more obvious.
文摘As the new materials and technologies are increasingly applied to construction of civil infrastructures such bridges, dam and tunnels, the need for structural monitoring systems, maintenance and restoration becomes more important and vital. Bridges are widespread in every society and affect its human, social, economical and cultural aspects. Measurements and monitoring of the structural deformation of highway bridges have an essential role in structural safety. This paper investigates an integrated monitoring system for estimation of the deformation behavior of one of the important reinforced bridges in Egypt. The applied data for analysing the deformation of any structure from geodetic observations are the coordinates of several monitoring points distributed on the structure itself. The coordinates of these points are calculated with respect to control fixed points. So any deviations in the control points coordinates between the two successive epochs of observations will affect the values of structural deformation. To overcome this shortage, applying the multi-parameter transformation will be studied in this paper for structural health monitoring of bridges. Statistical tests using F-Fisher criterion with a confidence level of 98% of the geodetic observations for bridge deformation values are also presented. The results of the practical measurements, analysis of the interesting deformation technique and traffic flow around the studied highway bridge are also presented. The resulting structural deformation values from statistical tests provide a significant improvement of understanding and prediction the structure deformation values of highway bridges.
文摘Construction progress of long-span bridge is complicated and the quality control is strict. Any disadvantage during construction may potentially affect the internal forces and deck alignments after it is open to traffic. To exactly evaluate the periodic alignments, internal forces and safety, geometrical and physical monitoring are needed during construction. This study aims at the requirement of dynamic geometric monitoring during Sutong Bridge construction, and introduces the realization and observing schemes of the self-developed GPS real-time dynamic geometrical deformation monitoring system. Affected by wind load and construction circumstance, GPS (global positioning system) monitoring signal contains a variety of noise. And the useful signal can be extracted from the signal after de-noising the noises. A de-noising method based on EMD (empirical mode decomposition) model is introduced here to process the bridge dynamic monitoring data, and with the wavelet threshold de-noising method are compared. The result shows that the EMD method has good adaptability, is free from the choice of wavelet bases and the number of decomposition layer. The method is an effective de-noising method for dynamic deformation monitoring to large-span bridges.
基金Science and Technology Innovation Program of Hunan Province(No.2021RC4037)National Natural Science Foundation of China:Deformation Monitoring Key Technology and Damage Mechanism Research on Data Fusion among GB-SAR and Multi-sensors(No.41877283)Scientific Research Project of Hunan Provincial Department of Natural Resources(No.2021-18)
文摘Bridge deformation monitoring usually adopts contact sensors,and the implementation process is often limited by the environment and observation conditions,resulting in unsatisfactory monitoring accuracy and effect.Ground-Based Synthetic Aperture Radar(GBSAR)combined with corner reflectors was used to perform static load-loaded deformation destruction experiments on solid model bridges in a non-contact manner.The semi parametric spline filtering and its optimization method were used to obtain the monitoring results of the GBSAR radar’s line of sight deformation,and the relative position of the corner reflector and the millimeter level deformation signals under different loading conditions were successfully extracted.The deformation transformation model from the radar line of sight direction to the vertical vibration direction was deduced.The transformation results of deformation monitoring and the measurement data such as the dial indicator were compared and analyzed.The occurrence and development process of bridge deformation and failure were successfully monitored,and the deformation characteristics of the bridge from continuous loading to eccentric loading until bridge failure were obtained.The experimental results show that GBSAR combined with corner reflector can be used for deformation feature acquisition,damage identification and health monitoring of bridges and other structures,and can provide a useful reference for design,construction and safety evaluation.
文摘The positioning combined with multi-functioning and interactive mechanics in dynamic testing of slender bridges are treated in present paper. The approach takes into account multiple functions in dynamic testing of slender bridges constructed of thin-walled structural members with their hierarchical configuration. Theoretical, numerical and experimental in situ assessments of the problem are presented. Some results of the application in situ are submitted.
文摘以国内某高速铁路钢拱桥为研究对象,选取2017—2018年期间59幅C波段Senti⁃nel-1号雷达卫星影像,利用PS-InSAR技术处理影像获得桥梁的视线向(Line of Sight,LOS)位移,根据SAR成像空间几何关系解算出支座的纵向位移.研究结果表明:支座纵向位移的时空特性与实际桥梁结构相符合,验证了PS-InSAR技术观测桥梁结构位移的可行性.建立支座纵向位移与温度的线性相关模型,并与结构健康监测系统的实测结果进行对比.两者吻合良好,相对误差控制在10%以内,验证了PS-InSAR测量桥梁结构位移的可靠性.利用有限元模拟温度作用下桥梁支座的位移变化,并与PS-InSAR位移时间序列进行对比.两者趋势基本一致,LOS向位移误差在[-10,10]mm,验证了PS-InSAR测量桥梁结构位移的准确性.