期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Towards establishing practical multi-hazard bridge design limit states 被引量:3
1
作者 Zach Liang George C.Lee 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2013年第3期333-340,共8页
In the U.S., the current Load and Resistance Factor Design (LRFD) Specifications for highway bridges is a reliability-based formulation that considers failure probabilities of bridge components due to the actions of... In the U.S., the current Load and Resistance Factor Design (LRFD) Specifications for highway bridges is a reliability-based formulation that considers failure probabilities of bridge components due to the actions of typical dead load and frequent vehicular loads. Various extreme load effects, such as earthquake and vessel collision, are on the same reliability-based platform. Since these extreme loads are time variables, combining them with not considered frequent. non- extreme loads is a significant challenge. The number of design limit state equations based on these failure probabilities can be unrealistically large and unnecessary from the view point of practical applications. Based on the opinion of AASHTO State Bridge Engineers, many load combinations are insignificant in their states. This paper describes the formulation of a criterion to include only the necessary load combinations to establish the design limit states. This criterion is established by examining the total failure probabilities for all possible time-invariant and time varying load combinations and breaking them down into partial terms. Then, important load combinations can be readily determined quantitatively, 展开更多
关键词 multi-hazards load and resistance factor design re.liability based bridge design specifications design limit state equations
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部