Currently, the monitoring of bridges in China heavily relies on manual operation, which has several major problems. It generally takes a very long time to complete an inspection process on bridges. The manual data is ...Currently, the monitoring of bridges in China heavily relies on manual operation, which has several major problems. It generally takes a very long time to complete an inspection process on bridges. The manual data is sometimes unreliable or even wrong in the case of careless operation. The inspection activity itself is dangerous for inspectors, e.g., bridges are located in the sea or river. Some semi-automatic monitoring methods are recently employed, but they are either very expensive or do not work properly. Therefore, the traditional bridge monitoring process becomes an increasing challenge for bridge operators. In this paper, a real-time and automatic bridge monitoring system is presented to meet the bridge monitoring needs, and MEMS (Micro Electro Mechanical Systems) are the key building block in this system. By using the MEMS-based sensors, it is much more efficient and accurate in monitoring bridges with the measurement of inclination, acceleration, displacement, moisture, temperature, stress and other data.展开更多
The measurements and analysis of deformation of engineering structures such as dams, bridges and high-rise buildings are important tasks for civil engineers. It is evident that, all civil engineering structures are su...The measurements and analysis of deformation of engineering structures such as dams, bridges and high-rise buildings are important tasks for civil engineers. It is evident that, all civil engineering structures are susceptible for deterioration over a period of time. Bridges in particular, deteriorate due to loading conditions, environmental changes, earth movement, material used during construction, age and corrosion of steel. Continuous monitoring of such structure is the most important aspect as it provides quantitative information, assesses the state of the structure, detects unsafe positions and proposes early safety measures to be taken before it can threaten the safety of vehicles, goods and human life. Despite government’s efforts to construct roads and highways, bridge deformation monitoring has not been given priority in most of African countries and ultimately causes some bridges to collapse unexpectedly. The purpose of this research is to integrate Global Positioning System (GPS) and Linear Variable Differential Transducers (LVDT) to monitor deformation of a bridge. The horizontal positions of reference and monitoring points were determined using Global Positioning System (GPS) while the vertical deflections, accelerations and strain were determined using Linear Variable Differential Transducers (LVDT). The maximum displacements obtained between zero and first epochs in x, y and z components were 0.798 m, at point LT08, 0.865 m at point BR13, and 0.56 m at point LT02 respectively. The maximum deflections for LVDT 1, 2 and 3 are 28.563 mm, 31.883 mm and 40.926 mm respectively. Finally, the correlation coefficient for the observations was 0.679 with standard deviations of 0.0168 and 0.0254 in x and y respectively. Our results identified some slight displacements in horizontal components at the bridge.展开更多
As a crucial infrastructure in the transport system,the safe operation of bridges is directly related to all aspects of people’s daily lives.The development of bridge structural health monitoring technology and its a...As a crucial infrastructure in the transport system,the safe operation of bridges is directly related to all aspects of people’s daily lives.The development of bridge structural health monitoring technology and its application play an important role in ensuring the safety and extending the service life of bridges.This paper carries out in-depth research and analysis on the related technology of bridge structural health monitoring.Firstly,the existing monitoring technologies at home and abroad are sorted out,and the advantages and problems of various methods are compared and analyzed,including nondestructive testing,stress measurement,vibration characteristic identification,and other commonly used monitoring technologies.Secondly,the key technologies and equipment in the bridge health monitoring system,such as sensor technology,data acquisition,and processing technology,are introduced in detail.Finally,the development trend in the field of bridge health monitoring is prospected from both theoretical research and technical application.In the future,with the development of emerging technologies such as big data,cloud computing,and the Internet of Things,it is expected that bridge health monitoring with intelligent and systematic features will be more widely applied to provide a stronger guarantee for the safe and efficient operation of bridges.展开更多
Traditional bridge monitoring systems often require wired connections between sensors,a data acquisition system,and data center.The use of extension wires,conduits,and other costly accessories can dramatically increas...Traditional bridge monitoring systems often require wired connections between sensors,a data acquisition system,and data center.The use of extension wires,conduits,and other costly accessories can dramatically increase the total cost of bridge monitoring.With the development of wireless technologies and the notable cost benefits,many researchers have been integrating wireless networks into bridge monitoring system.In this study,a wireless bridge monitoring system has been developed based on the Sub-1 GHz network.The main functional components of this system include sensors,wireless nodes,gateway and data center.Wireless nodes can convert analog signals obtained from the sensors to digital signals,then transmit the collected data to the gateway using the Sub1 GHz network.The gateway receives and sorts data from different wireless nodes and then forwards these data to the data center wirelessly.All collected data are processed in the data center using the data processing software developed in this study.In order to validate the performance of the wireless system developed in this study,a steel girder bridge was monitored in the field during the concrete deck construction.The field results were also compared with the theoretical values obtained from finite element models to ensure the accuracy and reliability of the wireless system.The results indicate that the wireless bridge monitoring system developed in this study is effective and affordable.The Sub-1 GHz network can be a better solution for bridges with complicated site conditions because of the extended data transmission distance.Although the power consumption can be controlled by using low-power consumption components,including the power control in software design can also dramatically reduce the system’s power consumption.展开更多
The high profile failure of the Malahide Viaduct in Dublin, Ireland, which is a part of the EU TEN-T network of critical transport links, was caused by foundation scour. Scour is a common soil-structure interaction pr...The high profile failure of the Malahide Viaduct in Dublin, Ireland, which is a part of the EU TEN-T network of critical transport links, was caused by foundation scour. Scour is a common soil-structure interaction problem. In light of current changes in climate, increasing frequency of flooding, coupled with the increasing magnitude of these flood events, will lead to a higher risk of bridge failure. Moni- toring scour is of paramount importance to ensure the continued safe operation of the aging bridge asset network. Most monitoring regimes are based on expensive underwater instrumentation that can often be subjected to damage during times of flooding, when scour risk is at its highest. This paper presents a critical review of existing scour monitoring equipments and methodologies with a particular focus on those using the dynamic response of the structure to indicate the existence and severity of the scour phenomenon affecting the structure. A sensitivity study on a recently developed monitoring method is also undertaken.展开更多
A real-time,long-round global positioning system (GPS) bridge-deformation monitoring technology was proposed,which processes the carrier phase of multiple GPS receivers in an operation center.It was demon- strated an ...A real-time,long-round global positioning system (GPS) bridge-deformation monitoring technology was proposed,which processes the carrier phase of multiple GPS receivers in an operation center.It was demon- strated an extended Kalman filter with triple differential ionospheric-free measurement (EKF-TIF) which can eliminate the ionospheric delay,whiten the TIF noise and optimize the results of EKF,consequently,achieves a better performance than existing real time kinematic (RTK) solution.An experiment,which takes an active ionosphere condition into consideration,proves the feasibility of this system by comparing its records to that of a traditional RTK solution,practically,the system installed on the Donghai Bridge has survived a non-break running for five months.The analysis to the monitoring records shows the system achieves the designed accu- racy and reliability.展开更多
Automatic modal identification via automatically interpreting the stabilization diagram provides key technique in bridge structural health monitoring.This paper reviews the progress in the area of automatic modal iden...Automatic modal identification via automatically interpreting the stabilization diagram provides key technique in bridge structural health monitoring.This paper reviews the progress in the area of automatic modal identification based on interpreting the stabilization diagram.The whole identification process is divided into four steps from establishing the stabilization diagram to removing the outliers in the identification results.The criteria and algorithms used in each step in the existing studies are carefully summarized and classified.Comparisons between typical methods in cleaning and interpreting the stabilization diagram are also conducted.Real structure benchmarks used in the existing studies to validate the proposed automatic modal identification methods are also summarized.Based on the review and comparison,the specific ratio method for cleaning the stabilization diagram,the hierarchical clustering method for interpreting the stabilization diagram and the adjusted boxplot for removing the outliers in the identification results are the most suitable methods for each step.The key point of automatic modal identification based on interpreting the stabilization diagram has also discussed,and it is recommended to pay more attention to cleaning the stabilization diagram.Future study about automatic modal identification under situation with very few sensors deployed should be more concerned.This review aims to help researchers and practitioners in implementing existing automatic modal identification algorithms effectively and developing more suitable and practical methods for civil engineering structures in the future.展开更多
文摘Currently, the monitoring of bridges in China heavily relies on manual operation, which has several major problems. It generally takes a very long time to complete an inspection process on bridges. The manual data is sometimes unreliable or even wrong in the case of careless operation. The inspection activity itself is dangerous for inspectors, e.g., bridges are located in the sea or river. Some semi-automatic monitoring methods are recently employed, but they are either very expensive or do not work properly. Therefore, the traditional bridge monitoring process becomes an increasing challenge for bridge operators. In this paper, a real-time and automatic bridge monitoring system is presented to meet the bridge monitoring needs, and MEMS (Micro Electro Mechanical Systems) are the key building block in this system. By using the MEMS-based sensors, it is much more efficient and accurate in monitoring bridges with the measurement of inclination, acceleration, displacement, moisture, temperature, stress and other data.
文摘The measurements and analysis of deformation of engineering structures such as dams, bridges and high-rise buildings are important tasks for civil engineers. It is evident that, all civil engineering structures are susceptible for deterioration over a period of time. Bridges in particular, deteriorate due to loading conditions, environmental changes, earth movement, material used during construction, age and corrosion of steel. Continuous monitoring of such structure is the most important aspect as it provides quantitative information, assesses the state of the structure, detects unsafe positions and proposes early safety measures to be taken before it can threaten the safety of vehicles, goods and human life. Despite government’s efforts to construct roads and highways, bridge deformation monitoring has not been given priority in most of African countries and ultimately causes some bridges to collapse unexpectedly. The purpose of this research is to integrate Global Positioning System (GPS) and Linear Variable Differential Transducers (LVDT) to monitor deformation of a bridge. The horizontal positions of reference and monitoring points were determined using Global Positioning System (GPS) while the vertical deflections, accelerations and strain were determined using Linear Variable Differential Transducers (LVDT). The maximum displacements obtained between zero and first epochs in x, y and z components were 0.798 m, at point LT08, 0.865 m at point BR13, and 0.56 m at point LT02 respectively. The maximum deflections for LVDT 1, 2 and 3 are 28.563 mm, 31.883 mm and 40.926 mm respectively. Finally, the correlation coefficient for the observations was 0.679 with standard deviations of 0.0168 and 0.0254 in x and y respectively. Our results identified some slight displacements in horizontal components at the bridge.
文摘As a crucial infrastructure in the transport system,the safe operation of bridges is directly related to all aspects of people’s daily lives.The development of bridge structural health monitoring technology and its application play an important role in ensuring the safety and extending the service life of bridges.This paper carries out in-depth research and analysis on the related technology of bridge structural health monitoring.Firstly,the existing monitoring technologies at home and abroad are sorted out,and the advantages and problems of various methods are compared and analyzed,including nondestructive testing,stress measurement,vibration characteristic identification,and other commonly used monitoring technologies.Secondly,the key technologies and equipment in the bridge health monitoring system,such as sensor technology,data acquisition,and processing technology,are introduced in detail.Finally,the development trend in the field of bridge health monitoring is prospected from both theoretical research and technical application.In the future,with the development of emerging technologies such as big data,cloud computing,and the Internet of Things,it is expected that bridge health monitoring with intelligent and systematic features will be more widely applied to provide a stronger guarantee for the safe and efficient operation of bridges.
文摘Traditional bridge monitoring systems often require wired connections between sensors,a data acquisition system,and data center.The use of extension wires,conduits,and other costly accessories can dramatically increase the total cost of bridge monitoring.With the development of wireless technologies and the notable cost benefits,many researchers have been integrating wireless networks into bridge monitoring system.In this study,a wireless bridge monitoring system has been developed based on the Sub-1 GHz network.The main functional components of this system include sensors,wireless nodes,gateway and data center.Wireless nodes can convert analog signals obtained from the sensors to digital signals,then transmit the collected data to the gateway using the Sub1 GHz network.The gateway receives and sorts data from different wireless nodes and then forwards these data to the data center wirelessly.All collected data are processed in the data center using the data processing software developed in this study.In order to validate the performance of the wireless system developed in this study,a steel girder bridge was monitored in the field during the concrete deck construction.The field results were also compared with the theoretical values obtained from finite element models to ensure the accuracy and reliability of the wireless system.The results indicate that the wireless bridge monitoring system developed in this study is effective and affordable.The Sub-1 GHz network can be a better solution for bridges with complicated site conditions because of the extended data transmission distance.Although the power consumption can be controlled by using low-power consumption components,including the power control in software design can also dramatically reduce the system’s power consumption.
基金the support of the Earth and Natural Sciences(ENS) Doctoral Studies Programfunded by the Higher Education Authority(HEA) through the Program for Research at Third Level Institutions,Cycle 5(PRTLI-5)+1 种基金co-funded by the European Regional Development Fund(ERDF)the European Union Framework 7 project SMART RAIL(Project No.285683)
文摘The high profile failure of the Malahide Viaduct in Dublin, Ireland, which is a part of the EU TEN-T network of critical transport links, was caused by foundation scour. Scour is a common soil-structure interaction problem. In light of current changes in climate, increasing frequency of flooding, coupled with the increasing magnitude of these flood events, will lead to a higher risk of bridge failure. Moni- toring scour is of paramount importance to ensure the continued safe operation of the aging bridge asset network. Most monitoring regimes are based on expensive underwater instrumentation that can often be subjected to damage during times of flooding, when scour risk is at its highest. This paper presents a critical review of existing scour monitoring equipments and methodologies with a particular focus on those using the dynamic response of the structure to indicate the existence and severity of the scour phenomenon affecting the structure. A sensitivity study on a recently developed monitoring method is also undertaken.
文摘A real-time,long-round global positioning system (GPS) bridge-deformation monitoring technology was proposed,which processes the carrier phase of multiple GPS receivers in an operation center.It was demon- strated an extended Kalman filter with triple differential ionospheric-free measurement (EKF-TIF) which can eliminate the ionospheric delay,whiten the TIF noise and optimize the results of EKF,consequently,achieves a better performance than existing real time kinematic (RTK) solution.An experiment,which takes an active ionosphere condition into consideration,proves the feasibility of this system by comparing its records to that of a traditional RTK solution,practically,the system installed on the Donghai Bridge has survived a non-break running for five months.The analysis to the monitoring records shows the system achieves the designed accu- racy and reliability.
基金supported by National Key R&D Program of China(No.2019YFB1600702)the National Natural Science Foundation of China(No.51878059).
文摘Automatic modal identification via automatically interpreting the stabilization diagram provides key technique in bridge structural health monitoring.This paper reviews the progress in the area of automatic modal identification based on interpreting the stabilization diagram.The whole identification process is divided into four steps from establishing the stabilization diagram to removing the outliers in the identification results.The criteria and algorithms used in each step in the existing studies are carefully summarized and classified.Comparisons between typical methods in cleaning and interpreting the stabilization diagram are also conducted.Real structure benchmarks used in the existing studies to validate the proposed automatic modal identification methods are also summarized.Based on the review and comparison,the specific ratio method for cleaning the stabilization diagram,the hierarchical clustering method for interpreting the stabilization diagram and the adjusted boxplot for removing the outliers in the identification results are the most suitable methods for each step.The key point of automatic modal identification based on interpreting the stabilization diagram has also discussed,and it is recommended to pay more attention to cleaning the stabilization diagram.Future study about automatic modal identification under situation with very few sensors deployed should be more concerned.This review aims to help researchers and practitioners in implementing existing automatic modal identification algorithms effectively and developing more suitable and practical methods for civil engineering structures in the future.