This paper presents comparison of numerical models used in an analysis of a road bridge deck. The models were adapted for computing the live load distribution coefficients in composite concrete bridge deck. The load d...This paper presents comparison of numerical models used in an analysis of a road bridge deck. The models were adapted for computing the live load distribution coefficients in composite concrete bridge deck. The load distribution method was chosen for assessment of the usability of different numerical model in slab bridge deck analysis. The goal of the study is to determine a simplest but still accurate numerical model to estimate live load effects on composite slab bridge. In the analysis, the well-established grillage approach was adapted for representation of the bridge deck as a basic model as well as more sophisticated three-dimensional models which was supposed to better represent the real behavior of the deck under concentrated wheel loads. The bridge deck was effectively modeled using beam and shell elements. The grillage method compares well with the finite-element method. This finding is allowed to establish simplification in numerical modeling of slab bridge decks for live load effect computations.展开更多
The numerical method for computing the live load distribution coefficients in bridge decks is presented. The grillage analogy for representation of bridge decks is adopted in determining the general behavior under tra...The numerical method for computing the live load distribution coefficients in bridge decks is presented. The grillage analogy for representation of bridge decks is adopted in determining the general behavior under traffic loads. The principles of Maxwell's reciprocal theorem are developed in computing live load distribution coefficients and their influence lines. The presented method uses the approach developed in traditional methods of transversal live load distribution but bridge decks are modeled more realistic with the help of well-established grillage analogy. Simple numerical programs for grillage analysis can be used and no special software is needed. While computing the distribution coefficients for a bridge deck the rest of the analysis can be performed with habitual procedures of structural mechanics.展开更多
In order to determine the reasonable completed dead load state in earth-anchored cable-stayed bridges,a practical method is proposed. The method is based on the rigidly supported continuous beam method and the feasibl...In order to determine the reasonable completed dead load state in earth-anchored cable-stayed bridges,a practical method is proposed. The method is based on the rigidly supported continuous beam method and the feasible zone method,emphasizing on the mutual effect between the self-anchored structural parts and the earth-anchored ones. Three cable-stayed bridge models are designed with the main spans of 1 400 m,including a partially earth-anchored cable-stayed bridge,a cable-stayed-suspension bridge and a fully selfanchored cable-stayed bridge,in which the C50 concrete and Q345 steel are adopted. The partially earthanchored cable-stayed bridge and the cable-stayed-suspension bridge secure lower compressive force in the girder than the fully self-anchored cable-stayed bridge by 25 percent at least. The same is for the material consumption of the whole bridge. Furthermore,the anchor volume is more than 20% lower in the partially earthanchored cable-stayed bridge than that in the cable-stayed-suspension bridge. Consequently,the practical span of cable-stayed bridges can be accordingly extended.展开更多
Highway bridges are an important part of the transportation industry and can promote social economic construction and development.In actual operation,highway bridges are often damaged due to overload and natural facto...Highway bridges are an important part of the transportation industry and can promote social economic construction and development.In actual operation,highway bridges are often damaged due to overload and natural factors,which tend to affect the safety and shorten the service life of these bridges.Assessing the overall state and performance of highway bridges is therefore a key element.Static load test,which is a type of sustainable detection experiment,has many advantages,including low cost,high efficiency,and high accuracy.In this paper,the bridge structure is analyzed through the application of theoretical calculations and relevant comparisons,so as to judge the operating state of the bridge.展开更多
This paper focuses on understanding and evaluating the dynamic effect of the heavy-haul train system on the seismic performance of a long-span railway bridge. A systematic study on the effect of heavy-haul trains on b...This paper focuses on understanding and evaluating the dynamic effect of the heavy-haul train system on the seismic performance of a long-span railway bridge. A systematic study on the effect of heavy-haul trains on bridge seismic response has been conducted, considering the influence of vehicle modeling strategies and dynamic characteristics of the seismic waves. For this purpose, the performance of a long-span cable-stayed railway bridge is assessed with stationary trains atop it, where the heavy-haul vehicles are modeled in two different ways: the multi-rigid body model with suspension system and additional mass model. Comparison of the bridge response in the presence or absence of the train system has been conducted, and the vehicle loading situation, which includes full-load and no-load, is also discussed. The result shows that during the earthquake, the peak moment of the main girder and peak stress of stay cables increase by 80% and by 40% in the presence of fully loaded heavy-haul trains, respectively. At the same time, a considerable decrease appears in the peak acceleration of the main girder. This proves the existence of the damping effect of the heavy-haul train system, and this effect is more obvious for the fully loaded vehicles. Finally, this paper proposes an efficient vehicle modeling method with 2 degrees of freedom(DOF) for simplifying the treatment of the train system in bridge seismic checking.展开更多
Concrete precast multicell box-girder(MCB) bridges combine aesthetics with torsional stiffness perfectly.Previous analytical studies indicate that currently available specifications are unable to consider the effect o...Concrete precast multicell box-girder(MCB) bridges combine aesthetics with torsional stiffness perfectly.Previous analytical studies indicate that currently available specifications are unable to consider the effect of the twisting moment(torsional moment) on bridge actions.In straight bridges the effect of torsion is negligible and the transverse reinforced design is governed by other requirements.However,in the case of skewed bridges the effect of the twisting moment should be considered.Therefore,an in-depth study was performed on 90 concrete MCB bridges with skew angles ranging from 0° to 60°.For each girder the bridge actions were determined under the American Association of State Highway and Transportation Officials(AASHTO) live load conditions.The analytical results show that torsional stiffness and live load positions greatly affected the bridges' responses.In addition,based on a statistical analysis of the obtained results,several skew correction factors are proposed to improve the precision of the simplified Henry's method,which is widely used by bridge engineers to predict bridge actions.The relationship between the bending moment and secondary moments was also investigated and it was concluded that all secondary actions increase with an increase in skewness.展开更多
Modern suspension bridges exhibit a trend of lighter structures,more diversified structural forms,and longer spans,the latter already exceeding two kilometers.Bridge performance under dead and live loads depends on th...Modern suspension bridges exhibit a trend of lighter structures,more diversified structural forms,and longer spans,the latter already exceeding two kilometers.Bridge performance under dead and live loads depends on their structural and main cable systems,while cablesupported bridges especially rely on the design analysis and construction control of the main cable.This literary survey systematically analyzes the research progress and state-ofthe-art status quo in the structural systems and design theories of suspension bridges,focusing on the structural systems,main cable shape analyses,live load effect analyses,and emerging lucrative research directions.More than 100 reliable references have been surveyed.(1)Multi-span or multi-main cable schemes appeal to increasing attention,which may become a better choice in terms of structural systems in scenarios with extremely long spans and heavy loads.The cable layouts,such as spatial main cables and hybrid cable-stayed suspension systems have also become feasible approaches for enhancing structural stiffness.(2)The shape-finding analysis during the construction phase is more complex and has more essential factors than that of the completed bridge state.Refined theories combining analytical methods and finite element methods are more suitable for the shape-finding analysis of complex cable systems than any single theory of the two,especially for novel cable systems.(3)The live load effect analysis methods based on traditional deflection theory or modified/improved deflection theories still have wide applications,but the refined theory of treating hangers as discrete members is also constantly developing,which is expected to provide new ideas for more complex structural analysis under the different types of live loads and their distribution forms.展开更多
The statistical modeling of extraordinary loads on buildings has been stagnant for decades due to the laborious and error-prone nature of existing survey methods,such as questionnaires and verbal inquiries.This study ...The statistical modeling of extraordinary loads on buildings has been stagnant for decades due to the laborious and error-prone nature of existing survey methods,such as questionnaires and verbal inquiries.This study proposes a new vision-based survey method for collecting extraordinary load data by automatically analyzing surveillance videos.For this purpose,a crowd head tracking framework is developed that integrates crowd head detection and reidentification models based on convolutional neural networks to obtain head trajectories of the crowd in the survey area.The crowd head trajectories are then analyzed to extract crowd quantity and velocities,which are the essential factors for extraordinary loads.For survey areas with frequent crowd movements during temporary events,the equivalent dynamic load factor can be further estimated using crowd velocity to consider dynamic effects.A crowd quantity investigation experiment and a crowd walking experiment are conducted to validate the proposed survey method.The experimental results prove that the proposed survey method is effective and accurate in collecting load data and reasonable in considering dynamic effects during extraordinary events.The proposed survey method is easy to deploy and has the potential to collect substantial and reliable extraordinary load data for determining design load on buildings.展开更多
文摘This paper presents comparison of numerical models used in an analysis of a road bridge deck. The models were adapted for computing the live load distribution coefficients in composite concrete bridge deck. The load distribution method was chosen for assessment of the usability of different numerical model in slab bridge deck analysis. The goal of the study is to determine a simplest but still accurate numerical model to estimate live load effects on composite slab bridge. In the analysis, the well-established grillage approach was adapted for representation of the bridge deck as a basic model as well as more sophisticated three-dimensional models which was supposed to better represent the real behavior of the deck under concentrated wheel loads. The bridge deck was effectively modeled using beam and shell elements. The grillage method compares well with the finite-element method. This finding is allowed to establish simplification in numerical modeling of slab bridge decks for live load effect computations.
文摘The numerical method for computing the live load distribution coefficients in bridge decks is presented. The grillage analogy for representation of bridge decks is adopted in determining the general behavior under traffic loads. The principles of Maxwell's reciprocal theorem are developed in computing live load distribution coefficients and their influence lines. The presented method uses the approach developed in traditional methods of transversal live load distribution but bridge decks are modeled more realistic with the help of well-established grillage analogy. Simple numerical programs for grillage analysis can be used and no special software is needed. While computing the distribution coefficients for a bridge deck the rest of the analysis can be performed with habitual procedures of structural mechanics.
基金Sponsored by the National Basic Research Program of China(Grant No.2013CB036303)the National Natural Science Foundation of China(Grant No.51008223)
文摘In order to determine the reasonable completed dead load state in earth-anchored cable-stayed bridges,a practical method is proposed. The method is based on the rigidly supported continuous beam method and the feasible zone method,emphasizing on the mutual effect between the self-anchored structural parts and the earth-anchored ones. Three cable-stayed bridge models are designed with the main spans of 1 400 m,including a partially earth-anchored cable-stayed bridge,a cable-stayed-suspension bridge and a fully selfanchored cable-stayed bridge,in which the C50 concrete and Q345 steel are adopted. The partially earthanchored cable-stayed bridge and the cable-stayed-suspension bridge secure lower compressive force in the girder than the fully self-anchored cable-stayed bridge by 25 percent at least. The same is for the material consumption of the whole bridge. Furthermore,the anchor volume is more than 20% lower in the partially earthanchored cable-stayed bridge than that in the cable-stayed-suspension bridge. Consequently,the practical span of cable-stayed bridges can be accordingly extended.
文摘Highway bridges are an important part of the transportation industry and can promote social economic construction and development.In actual operation,highway bridges are often damaged due to overload and natural factors,which tend to affect the safety and shorten the service life of these bridges.Assessing the overall state and performance of highway bridges is therefore a key element.Static load test,which is a type of sustainable detection experiment,has many advantages,including low cost,high efficiency,and high accuracy.In this paper,the bridge structure is analyzed through the application of theoretical calculations and relevant comparisons,so as to judge the operating state of the bridge.
基金Project(51678576) supported by the National Natural Science Foundation of ChinaProject(2017YFB1201204) supported by the National Key R&D Program of China。
文摘This paper focuses on understanding and evaluating the dynamic effect of the heavy-haul train system on the seismic performance of a long-span railway bridge. A systematic study on the effect of heavy-haul trains on bridge seismic response has been conducted, considering the influence of vehicle modeling strategies and dynamic characteristics of the seismic waves. For this purpose, the performance of a long-span cable-stayed railway bridge is assessed with stationary trains atop it, where the heavy-haul vehicles are modeled in two different ways: the multi-rigid body model with suspension system and additional mass model. Comparison of the bridge response in the presence or absence of the train system has been conducted, and the vehicle loading situation, which includes full-load and no-load, is also discussed. The result shows that during the earthquake, the peak moment of the main girder and peak stress of stay cables increase by 80% and by 40% in the presence of fully loaded heavy-haul trains, respectively. At the same time, a considerable decrease appears in the peak acceleration of the main girder. This proves the existence of the damping effect of the heavy-haul train system, and this effect is more obvious for the fully loaded vehicles. Finally, this paper proposes an efficient vehicle modeling method with 2 degrees of freedom(DOF) for simplifying the treatment of the train system in bridge seismic checking.
文摘Concrete precast multicell box-girder(MCB) bridges combine aesthetics with torsional stiffness perfectly.Previous analytical studies indicate that currently available specifications are unable to consider the effect of the twisting moment(torsional moment) on bridge actions.In straight bridges the effect of torsion is negligible and the transverse reinforced design is governed by other requirements.However,in the case of skewed bridges the effect of the twisting moment should be considered.Therefore,an in-depth study was performed on 90 concrete MCB bridges with skew angles ranging from 0° to 60°.For each girder the bridge actions were determined under the American Association of State Highway and Transportation Officials(AASHTO) live load conditions.The analytical results show that torsional stiffness and live load positions greatly affected the bridges' responses.In addition,based on a statistical analysis of the obtained results,several skew correction factors are proposed to improve the precision of the simplified Henry's method,which is widely used by bridge engineers to predict bridge actions.The relationship between the bending moment and secondary moments was also investigated and it was concluded that all secondary actions increase with an increase in skewness.
基金financially supported by the National Key R&D Program of China(No.2022YFB3706703)the National Natural Science Foundation of China(Nos.52078134 and 52378138)the Postgraduate Research&Practice Innovation Program of the Jiangsu Province of China(No.KYCX22_0220).
文摘Modern suspension bridges exhibit a trend of lighter structures,more diversified structural forms,and longer spans,the latter already exceeding two kilometers.Bridge performance under dead and live loads depends on their structural and main cable systems,while cablesupported bridges especially rely on the design analysis and construction control of the main cable.This literary survey systematically analyzes the research progress and state-ofthe-art status quo in the structural systems and design theories of suspension bridges,focusing on the structural systems,main cable shape analyses,live load effect analyses,and emerging lucrative research directions.More than 100 reliable references have been surveyed.(1)Multi-span or multi-main cable schemes appeal to increasing attention,which may become a better choice in terms of structural systems in scenarios with extremely long spans and heavy loads.The cable layouts,such as spatial main cables and hybrid cable-stayed suspension systems have also become feasible approaches for enhancing structural stiffness.(2)The shape-finding analysis during the construction phase is more complex and has more essential factors than that of the completed bridge state.Refined theories combining analytical methods and finite element methods are more suitable for the shape-finding analysis of complex cable systems than any single theory of the two,especially for novel cable systems.(3)The live load effect analysis methods based on traditional deflection theory or modified/improved deflection theories still have wide applications,but the refined theory of treating hangers as discrete members is also constantly developing,which is expected to provide new ideas for more complex structural analysis under the different types of live loads and their distribution forms.
基金The authors acknowledge the financial support provided by the National Natural Science Foundation of China(Grant No.52178151).
文摘The statistical modeling of extraordinary loads on buildings has been stagnant for decades due to the laborious and error-prone nature of existing survey methods,such as questionnaires and verbal inquiries.This study proposes a new vision-based survey method for collecting extraordinary load data by automatically analyzing surveillance videos.For this purpose,a crowd head tracking framework is developed that integrates crowd head detection and reidentification models based on convolutional neural networks to obtain head trajectories of the crowd in the survey area.The crowd head trajectories are then analyzed to extract crowd quantity and velocities,which are the essential factors for extraordinary loads.For survey areas with frequent crowd movements during temporary events,the equivalent dynamic load factor can be further estimated using crowd velocity to consider dynamic effects.A crowd quantity investigation experiment and a crowd walking experiment are conducted to validate the proposed survey method.The experimental results prove that the proposed survey method is effective and accurate in collecting load data and reasonable in considering dynamic effects during extraordinary events.The proposed survey method is easy to deploy and has the potential to collect substantial and reliable extraordinary load data for determining design load on buildings.