Purpose–Using the strong motion data ofK-net in Japan,the continuous magnitude prediction method based on support vector machine(SVM)was studied.Design/methodology/approach–In the range of 0.5–10.0 s after the P-wa...Purpose–Using the strong motion data ofK-net in Japan,the continuous magnitude prediction method based on support vector machine(SVM)was studied.Design/methodology/approach–In the range of 0.5–10.0 s after the P-wave arrival,the prediction time window was established at an interval of 0.5 s.12 P-wave characteristic parameters were selected as the model input parameters to construct the earthquake early warning(EEW)magnitude prediction model(SVM-HRM)for high-speed railway based on SVM.Findings–The magnitude prediction results of the SVM-HRM model were compared with the traditional magnitude prediction model and the high-speed railway EEW current norm.Results show that at the 3.0 s time window,themagnitude prediction error of the SVM-HRMmodel is obviously smaller than that of the traditionalτc method and Pd method.The overestimation of small earthquakes is obviously improved,and the construction of the model is not affected by epicenter distance,so it has generalization performance.For earthquake events with themagnitude range of 3–5,the single station realization rate of the SVM-HRMmodel reaches 95%at 0.5 s after the arrival of P-wave,which is better than the first alarm realization rate norm required by“The TestMethod of EEW andMonitoring Systemfor High-Speed Railway.”For earthquake eventswithmagnitudes ranging from3 to 5,5 to 7 and 7 to 8,the single station realization rate of the SVM-HRM model is at 0.5 s,1.5 s and 0.5 s after the P-wave arrival,respectively,which is better than the realization rate norm of multiple stations.Originality/value–At the latest,1.5 s after the P-wave arrival,the SVM-HRM model can issue the first earthquake alarm that meets the norm of magnitude prediction realization rate,which meets the accuracy and continuity requirements of high-speed railway EEW magnitude prediction.展开更多
Purpose–The purpose of the study is to quickly identify significant heterogeneity of surrounding rock of tunnel face that generally occurs during the construction of large-section rock tunnels of high-speed railways....Purpose–The purpose of the study is to quickly identify significant heterogeneity of surrounding rock of tunnel face that generally occurs during the construction of large-section rock tunnels of high-speed railways.Design/methodology/approach–Relying on the support vector machine(SVM)-based classification model,the nominal classification of blastholes and nominal zoning and classification terms were used to demonstrate the heterogeneity identification method for the surrounding rock of tunnel face,and the identification calculation was carried out for the five test tunnels.Then,the suggestions for local optimization of the support structures of large-section rock tunnels were put forward.Findings–The results show that compared with the two classification models based on neural networks,the SVM-based classification model has a higher classification accuracy when the sample size is small,and the average accuracy can reach 87.9%.After the samples are replaced,the SVM-based classification model can still reach the same accuracy,whose generalization ability is stronger.Originality/value–By applying the identification method described in this paper,the significant heterogeneity characteristics of the surrounding rock in the process of two times of blasting were identified,and the identification results are basically consistent with the actual situation of the tunnel face at the end of blasting,and can provide a basis for local optimization of support parameters.展开更多
In this paper,the least square support vector machine(LSSVM)is used to study the safety of a high-speed railway.According to the principle of LSSVM regression prediction,the parameters of the LSSVM are optimized to mo...In this paper,the least square support vector machine(LSSVM)is used to study the safety of a high-speed railway.According to the principle of LSSVM regression prediction,the parameters of the LSSVM are optimized to model the natural disaster early warning of safe operation of a high-speed railway,and the management measures and methods of high-speed railway safety operation under natural disasters are given.The relevant statistical data of China’s high-speed railway are used for training and verification.The experimental results show that the LSSVM can well reflect the nonlinear relationship between the accident rate and the influencing factors,with high simulation accuracy and strong generalization ability,and can effectively predict the natural disasters in the safe operation of a high-speed railway.Moreover,the early warning system can improve the ability of safety operation evaluation and early warning of high-speed railway under natural disasters,realize the development goals of high-speed railway(safety,speed,economic,low-carbon and environmental protection)and provide a theoretical basis and technical support for improving the safety of a high-speed railway.展开更多
Discomfort caused by long-term sitting decreases the passenger experience and may lead to musculoskeletal diseases, and this hasbecome one of the main problems for passengers of high-speed railways. However, the comfo...Discomfort caused by long-term sitting decreases the passenger experience and may lead to musculoskeletal diseases, and this hasbecome one of the main problems for passengers of high-speed railways. However, the comfort degradation mechanism during longtermsitting in high-speed railways is still unknown. This study aimed to reveal passengers’ sitting comfort degradation mechanismin high-speed railways. By carrying out long-term sitting tests on high-speed trains running on the Shanghai-Kunming line, the dynamicinterface pressure and subjective comfort including overall and regional comfort of seven participants were obtained.Machinelearning models and statistical analysis methods were combined for data analysis to reveal the effect of regional comfort and thecontribution of sitting duration during the process of sitting comfort degradation. The results show that overall comfort is most significantlyinfluenced by the comfort of the shoulders, waist and buttocks. The seats play different roles before and after 20 minutesduring long-term sitting and there is a lag between the fatigue occurring and being offset. Therefore, the structure of seats affectsoverall comfort by affecting important regional comfort, and a long-term sitting test is necessary for accurate seat assessment. Thecomfort degradation mechanism can be used to define standards for long-term sitting comfort or provide guidance for seat evaluation,and the design and evaluation plan mentioned in this article for second-class seats can be applied to other cases with limitedaccommodating space.展开更多
基金supported by the National Natural Science Foundation of China(U2039209,U1534202,51408564)Natural Science Foundation of Heilongjiang Province(LH2021E119)the National Key Research and Development Program of China(2018YFC1504003).
文摘Purpose–Using the strong motion data ofK-net in Japan,the continuous magnitude prediction method based on support vector machine(SVM)was studied.Design/methodology/approach–In the range of 0.5–10.0 s after the P-wave arrival,the prediction time window was established at an interval of 0.5 s.12 P-wave characteristic parameters were selected as the model input parameters to construct the earthquake early warning(EEW)magnitude prediction model(SVM-HRM)for high-speed railway based on SVM.Findings–The magnitude prediction results of the SVM-HRM model were compared with the traditional magnitude prediction model and the high-speed railway EEW current norm.Results show that at the 3.0 s time window,themagnitude prediction error of the SVM-HRMmodel is obviously smaller than that of the traditionalτc method and Pd method.The overestimation of small earthquakes is obviously improved,and the construction of the model is not affected by epicenter distance,so it has generalization performance.For earthquake events with themagnitude range of 3–5,the single station realization rate of the SVM-HRMmodel reaches 95%at 0.5 s after the arrival of P-wave,which is better than the first alarm realization rate norm required by“The TestMethod of EEW andMonitoring Systemfor High-Speed Railway.”For earthquake eventswithmagnitudes ranging from3 to 5,5 to 7 and 7 to 8,the single station realization rate of the SVM-HRM model is at 0.5 s,1.5 s and 0.5 s after the P-wave arrival,respectively,which is better than the realization rate norm of multiple stations.Originality/value–At the latest,1.5 s after the P-wave arrival,the SVM-HRM model can issue the first earthquake alarm that meets the norm of magnitude prediction realization rate,which meets the accuracy and continuity requirements of high-speed railway EEW magnitude prediction.
基金supported by the Science and Technology Research and Development Program of CHINA RAILWAY(Grant No.K2018G014,K2020G035)the National Natural Science Foundation of China(Grant No.51878567,51878568).
文摘Purpose–The purpose of the study is to quickly identify significant heterogeneity of surrounding rock of tunnel face that generally occurs during the construction of large-section rock tunnels of high-speed railways.Design/methodology/approach–Relying on the support vector machine(SVM)-based classification model,the nominal classification of blastholes and nominal zoning and classification terms were used to demonstrate the heterogeneity identification method for the surrounding rock of tunnel face,and the identification calculation was carried out for the five test tunnels.Then,the suggestions for local optimization of the support structures of large-section rock tunnels were put forward.Findings–The results show that compared with the two classification models based on neural networks,the SVM-based classification model has a higher classification accuracy when the sample size is small,and the average accuracy can reach 87.9%.After the samples are replaced,the SVM-based classification model can still reach the same accuracy,whose generalization ability is stronger.Originality/value–By applying the identification method described in this paper,the significant heterogeneity characteristics of the surrounding rock in the process of two times of blasting were identified,and the identification results are basically consistent with the actual situation of the tunnel face at the end of blasting,and can provide a basis for local optimization of support parameters.
基金supported by grants from the National Natural Science Foundation of China 51178157High-level Project of the Top Six Talents in Jiangsu Province JXQC-021+1 种基金the Key Science and Technology Program in Henan Province 182102310004the Postgraduate Research and Prac-tice Innovation Program of Jiangsu Province KYCX20-0290.
文摘In this paper,the least square support vector machine(LSSVM)is used to study the safety of a high-speed railway.According to the principle of LSSVM regression prediction,the parameters of the LSSVM are optimized to model the natural disaster early warning of safe operation of a high-speed railway,and the management measures and methods of high-speed railway safety operation under natural disasters are given.The relevant statistical data of China’s high-speed railway are used for training and verification.The experimental results show that the LSSVM can well reflect the nonlinear relationship between the accident rate and the influencing factors,with high simulation accuracy and strong generalization ability,and can effectively predict the natural disasters in the safe operation of a high-speed railway.Moreover,the early warning system can improve the ability of safety operation evaluation and early warning of high-speed railway under natural disasters,realize the development goals of high-speed railway(safety,speed,economic,low-carbon and environmental protection)and provide a theoretical basis and technical support for improving the safety of a high-speed railway.
基金the National Natural Science Foundation of China(Grant No.52075553)the Hunan Science Foundation for Distinguished Young Scholars of China(Grant No.2021JJ10059)the School Enterprise Cooperation Program of Central South University(Grant No.2021XQLH011).
文摘Discomfort caused by long-term sitting decreases the passenger experience and may lead to musculoskeletal diseases, and this hasbecome one of the main problems for passengers of high-speed railways. However, the comfort degradation mechanism during longtermsitting in high-speed railways is still unknown. This study aimed to reveal passengers’ sitting comfort degradation mechanismin high-speed railways. By carrying out long-term sitting tests on high-speed trains running on the Shanghai-Kunming line, the dynamicinterface pressure and subjective comfort including overall and regional comfort of seven participants were obtained.Machinelearning models and statistical analysis methods were combined for data analysis to reveal the effect of regional comfort and thecontribution of sitting duration during the process of sitting comfort degradation. The results show that overall comfort is most significantlyinfluenced by the comfort of the shoulders, waist and buttocks. The seats play different roles before and after 20 minutesduring long-term sitting and there is a lag between the fatigue occurring and being offset. Therefore, the structure of seats affectsoverall comfort by affecting important regional comfort, and a long-term sitting test is necessary for accurate seat assessment. Thecomfort degradation mechanism can be used to define standards for long-term sitting comfort or provide guidance for seat evaluation,and the design and evaluation plan mentioned in this article for second-class seats can be applied to other cases with limitedaccommodating space.