To enhance our talent cultivation model through“school-enterprise cooperation and industry-teaching fusion”,we aim to improve the“4321”Industry-Education Integration System.This includes actively promoting the use...To enhance our talent cultivation model through“school-enterprise cooperation and industry-teaching fusion”,we aim to improve the“4321”Industry-Education Integration System.This includes actively promoting the use of case banks and project banks in teaching to develop students’practical engineering skills through hands-on application of professional knowledge.Additionally,landscape design courses emphasize practical learning experiences to implement the fundamental goal of“cultivating morality”.Guided by enhancing students’practical skills,we ensure alignment with course objectives and professional training requirements,emphasizing the seamless integration of theory and practice.展开更多
To further enhance the effectiveness of talent cultivation for interior design in vocational colleges,it is necessary to vigorously promote the construction of an industry-education integration model.Through this mode...To further enhance the effectiveness of talent cultivation for interior design in vocational colleges,it is necessary to vigorously promote the construction of an industry-education integration model.Through this model,the roles of both enterprises and schools can be leveraged to jointly facilitate the continuous improvement of students’professional abilities and practical skills,providing a steady stream of high-quality talents for the development of the interior design field.Therefore,this paper analyzes the current issues in interior design talent cultivation in vocational colleges from the perspective of industry-education integration and proposes corresponding improvement measures.展开更多
With the upgrading of industries,the cosmetics industry has posed new requirements for technical talents.As a professional core course in cosmetic technology,“Cosmetic Product Formulation Design and Preparation Techn...With the upgrading of industries,the cosmetics industry has posed new requirements for technical talents.As a professional core course in cosmetic technology,“Cosmetic Product Formulation Design and Preparation Technology”serves as the foundation for cultivating students’abilities in cosmetic development and preparation.To foster high-quality skilled talents capable of adapting to the rapid growth of color cosmetics and to better promote the deep integration of scientific and technological industries with curriculum teaching,the teacher team embarked on active explorations and practical teaching research for curriculum teaching reform from four dimensions:strengthening top-level design,enriching teaching content,optimizing teaching design,and reforming assessment methods.These efforts have enhanced students’comprehensive vocational qualities and innovative consciousness,contributing to the teaching reform in higher vocational colleges under the integration of industry,education,and research.展开更多
According to the variable toe-to-heel well spacing, combined with the dislocation theory, discrete lattice method, and finite-element-method(FEM) based fluid-solid coupling, an integrated geological-engineering method...According to the variable toe-to-heel well spacing, combined with the dislocation theory, discrete lattice method, and finite-element-method(FEM) based fluid-solid coupling, an integrated geological-engineering method of volume fracturing for fan-shaped well pattern is proposed considering the geomechanical modeling, induced stress calculation, hydraulic fracturing simulation, and post-frac productivity evaluation. Besides, we propose the differential fracturing design for the conventional productivity-area and the potential production area for fan-shaped horizontal wells. After the fracturing of the conventional production area for H1 fan-shaped well platform, the research shows that the maximum reduction of the horizontal principal stress difference in the potential productivity-area is 0.2 MPa, which cannot cause the stress reversal, but this reduction is still conducive to the lateral propagation of hydraulic fractures. According to the optimized fracturing design, in zone-Ⅰ of the potential production area, only Well 2 is fractured, with a cluster spacing of 30 m and an injection rate of 12 m^(3)/min per stage;in zone-Ⅱ, Well 2 is fractured before Well 3, with a cluster spacing of 30 m and an injection rate of 12 m^(3)/min per stage. The swept area of the pore pressure drop in the potential production area is small, showing that the reservoir is not well developed. The hydraulic fracturing in the toe area can be improved by, for example, properly densifying the fractures and adjusting the fracture distribution, in order to enhance the swept volume and increase the reservoir utilization.展开更多
With the accelerated development and utilization of urban underground space,the underground space design of complex based on rail transit has attracted much attention.By sorting out the integration concept and constru...With the accelerated development and utilization of urban underground space,the underground space design of complex based on rail transit has attracted much attention.By sorting out the integration concept and constructing the logical framework of integrated design,the integrated design strategy is proposed from the aspects of function,transportation,space and environment on the urban scale,and the evaluation points of integrated design effect are put forward from the aspects of accessibility,coordination,openness and symbolism.展开更多
A blank panel design algorithm based on feature mapping methods for integral wing skin panels with supercritical airfoil surface is presented.The model of a wing panel is decomposed into features,and features of the p...A blank panel design algorithm based on feature mapping methods for integral wing skin panels with supercritical airfoil surface is presented.The model of a wing panel is decomposed into features,and features of the panel are decomposed into information of location,direction,dimension and Boolean types.Features are mapped into the plane through optimal surface development algorithm.The plane panel is modeled by rebuilding the mapped features.Blanks of shot-peen forming panels are designed to identify the effectiveness of the methods.展开更多
In this paper,we formulate the precoding problem of integrated sensing and communication(ISAC)waveform as a non-convex quadratically constrained quadratic programming(QCQP),in which the weighted sum of communication m...In this paper,we formulate the precoding problem of integrated sensing and communication(ISAC)waveform as a non-convex quadratically constrained quadratic programming(QCQP),in which the weighted sum of communication multi-user interference(MUI)and the gap between dual-use waveform and ideal radar waveform is minimized with peak-toaverage power ratio(PAPR)constraints.We propose an efficient algorithm based on alternating direction method of multipliers(ADMM),which is able to decouple multiple variables and provide a closed-form solution for each subproblem.In addition,to improve the sensing performance in both spatial and temporal domains,we propose a new criteria to design the ideal radar waveform,in which the beam pattern is made similar to the ideal one and the integrated sidelobe level of the ambiguity function in each target direction is minimized in the region of interest.The limited memory Broyden-Fletcher-Goldfarb-Shanno(LBFGS)algorithm is applied to the design of the ideal radar waveform which works as a reference in the design of the dual-function waveform.Numerical results indicate that the designed dual-function waveform is capable of offering good communication quality of service(QoS)and sensing performance.展开更多
This work provides an overview of distillation processes,including process design for different distillation processes,selection of entrainers for special distillation processes,system integration and intensification ...This work provides an overview of distillation processes,including process design for different distillation processes,selection of entrainers for special distillation processes,system integration and intensification of distillation processes,optimization of process parameters for distillation processes and recent research progress in dynamic control strategies.Firstly,the feasibility of using thermodynamic topological theories such as residual curve,phase equilibrium line and distillation boundary line to analyze different separation regions is discussed,and the rationality of distillation process design is discussed by using its feasibility.Secondly,the application of molecular simulation methods such as molecular dynamics simulation and quantum chemical calculation in the screening of entrainer is discussed for the extractive distillation process.The thermal coupling mechanism of different distillation processes is used to explore the process of different process intensifications.Next,a mixed integer nonlinear optimization strategy for the distillation process based on different algorithms is introduced.Finally,the improvement of dynamic control strategies for different distillation processes in recent years is summarized.This work focuses on the application of process intensification and system optimization in the design of distillation process,and analyzes the challenges,prospects,and development trends of distillation technology in the separation of multicomponent azeotropes.展开更多
Integrated sensing and communication(ISAC)is regarded as a pivotal technology for 6G communication.In this paper,we employ Kullback-Leibler divergence(KLD)as the unified performance metric for ISAC systems and investi...Integrated sensing and communication(ISAC)is regarded as a pivotal technology for 6G communication.In this paper,we employ Kullback-Leibler divergence(KLD)as the unified performance metric for ISAC systems and investigate constellation and beamforming design in the presence of clutters.In particular,the constellation design problem is solved via the successive convex approximation(SCA)technique,and the optimal beamforming in terms of sensing KLD is proven to be equivalent to maximizing the signal-to-interference-plus-noise ratio(SINR)of echo signals.Numerical results demonstrate the tradeoff between sensing and communication performance under different parameter setups.Additionally,the beampattern generated by the proposed algorithm achieves significant clutter suppression and higher SINR of echo signals compared with the conventional scheme.展开更多
According to the operational characteristics of the logistics networks for the third party logistics supplier (3PLS), the forward and reverse logistics networks together for 3PLS under the uncertain environment are ...According to the operational characteristics of the logistics networks for the third party logistics supplier (3PLS), the forward and reverse logistics networks together for 3PLS under the uncertain environment are designed. First, a fuzzy model is proposed by taking multiple customers, multiple commodities, capacitated facility location and integrated logistics facility layout into account. In the model, the fuzzy customer demands and transportation rates are illustrated by triangular fuzzy numbers. Secondly, the fuzzy model is converted into a crisp model by applying fuzzy chance constrained theory and possibility theory, and one hybrid genetic algorithm is designed for the crisp model. Finally, two different examples are designed to illustrate that the model and solution discussed are valid.展开更多
Orthogonal frequency division multiplexing (OFDM) waveform enables radar and communication functions simultaneously, which encounters low angle resolution and poor data rate for traditional single input single output ...Orthogonal frequency division multiplexing (OFDM) waveform enables radar and communication functions simultaneously, which encounters low angle resolution and poor data rate for traditional single input single output (SISO) systems. To solve these problems, an integrated radar and communication system (IRCS) with multiple input multiple output (MIMO) OFDM waveform is proposed. The different limitations of radar and communication in designing such a system are investigated. Then, an optimization problem is devised to obtain suitable system parameters, including the number of subcarriers, subcarrier spacing, number of symbols, pulse repetition frequency (PRF) and length of cyclic prefix (CP). Finally, to satisfy the requirements of both radar and communication, the IRCS parameters are derived in three typical cases. Several numerical results are presented to illustrate the demands of radar and communication, inconsistent or consistent, for the IRCS parameters and the superiority of the proposed system.展开更多
In the case of the given design variables and constraint functions, this paper is concerned with the rapid overall parameters design of trajectory, propulsion and aerodynamics for long-range ballistic missiles based o...In the case of the given design variables and constraint functions, this paper is concerned with the rapid overall parameters design of trajectory, propulsion and aerodynamics for long-range ballistic missiles based on the index of the minimum take-off mass.In contrast to the traditional subsystem independent design, this paper adopts the research idea of the combination of the subsystem independent design and the multisystem integration design.Firstly, the trajectory, propulsion and aerodynamics of the subsystem are separately designed by the engineering design, including the design of the minimum energy trajectory, the computation of propulsion system parameters, and the calculation of aerodynamic coefficient and dynamic derivative of the missile by employing the software of missile DATCOM. Then, the uniform design method is used to simplify the constraint conditions and the design variables through the integration design, and the accurate design of the optimized variables would be accomplished by adopting the uniform particle swarm optimization(PSO) algorithm. Finally, the automation design software is written for the three-stage solid ballistic missile. The take-off mass of 29 850 kg is derived by the subsystem independent design, and 20 constraints are reduced by employing the uniform design on the basis of 29 design variables and 32 constraints, and the take-off mass is dropped by 1 850 kg by applying the combination of the uniform design and PSO. The simulation results demonstrate the effectiveness and feasibility of the proposed hybrid optimization technique.展开更多
As an important sensor in the navigation systems,star sensors and the gyro play important roles in spacecraft attitude determination system.Complex environmental factors are the main sources of error in attitude deter...As an important sensor in the navigation systems,star sensors and the gyro play important roles in spacecraft attitude determination system.Complex environmental factors are the main sources of error in attitude determination.The error influence of different benchmarks and the disintegration mode between the star sensor and the gyro is analyzed in theory.The integrated design of the star sensor and the gyro on the same benchmark can effectively avoid the error influence and improves the spacecraft attitude determination accuracy.Simulation results indicate that when the stars sensor optical axis vectors overlap the reference coordinate axis of the gyro in the same benchmark,the attitude determination accuracy improves.展开更多
The design of Human Occupied Vehicle (HOV) is a typical multidisciplinary problem, but heavily dependent on the experience of naval architects at present engineering design. In order to relieve the experience depend...The design of Human Occupied Vehicle (HOV) is a typical multidisciplinary problem, but heavily dependent on the experience of naval architects at present engineering design. In order to relieve the experience dependence and improve the design, a new Multidisciplinary Design Optimization (MDO) method "Bi-Level Integrated System Collaborative Optimization (BLISCO)" is applied to the conceptual design of an HOV, which consists of hull module, resistance module, energy module, structure module, weight module, and the stability module. This design problem is defined by 21 design variables and 23 constraints, and its objective is to maximize the ratio of payload to weight. The results show that the general performance of the HOV can be greatly improved by BLISCO.展开更多
Some key issues in supporting collaborative design in product data management(PDM ) system and 3D computer aided design(CAD) system integrated environment are analyzed. The general architecture of the integrated e...Some key issues in supporting collaborative design in product data management(PDM ) system and 3D computer aided design(CAD) system integrated environment are analyzed. The general architecture of the integrated environment is divided into five tiers and employs the transparently integrated mode, with the mode, function calling and information exchanging among independent PDM and CAD processes are carried out via message translation /parse approach. Product layout feature(PLF ) model definition is presented, PLF model is used to represent design intention at the preliminary design phase. The collaborative design methodology employing the PLF model in PDM/3D CAD integrated environment is analyzed. The design methodology can speed up the design process, reduce the investment and improve the product quality.展开更多
Based on fundamental principles of ecology ,the ecological philosophy connotation of Feng-Shui(Wind and Water) concept from experiences of Chinese agricultural culture was first discussed , and then hu-man-ecological ...Based on fundamental principles of ecology ,the ecological philosophy connotation of Feng-Shui(Wind and Water) concept from experiences of Chinese agricultural culture was first discussed , and then hu-man-ecological implications of Feng-Shui environment architecture is analyzed. As a theoretical integrationbetween human ecology and Feng-Shui theory ,“environment” and “environmental design” concepts were re-examined and given new definitions. With holistic principles of human ecological design in the context ofFeng-Shui , essential technical ways of integrative human ecological design were explored in the presentationof a case study of an urban environmental design in east China.展开更多
The basic indexes of all-optical integrated photonic circuits include high-density integration,ultrafast response and ultralow energy consumption.Traditional methods mainly adopt conventional micro/nano-structures.The...The basic indexes of all-optical integrated photonic circuits include high-density integration,ultrafast response and ultralow energy consumption.Traditional methods mainly adopt conventional micro/nano-structures.The overall size of the circuit is large,usually reaches hundreds of microns.Besides,it is difficult to balance the ultrafast response and ultra-low energy consumption problem,and the crosstalk between two traditional devices is difficult to overcome.Here,we propose and experimentally demonstrate an approach based on inverse design method to realize a high-density,ultrafast and ultra-low energy consumption integrated photonic circuit with two all-optical switches controlling the input states of an all-optical XOR logic gate.The feature size of the whole circuit is only 2.5μm×7μm,and that of a single device is 2μm×2μm.The distance between two adjacent devices is as small as 1.5μm,within wavelength magnitude scale.Theoretical response time of the circuit is 150 fs,and the threshold energy is within 10 fJ/bit.We have also considered the crosstalk problem.The circuit also realizes a function of identifying two-digit logic signal results.Our work provides a new idea for the design of ultrafast,ultra-low energy consumption all-optical devices and the implementation of high-density photonic integrated circuits.展开更多
Computer supported collaborative design (CSCD) technology has been applied extensively with intensive market competition.The key technologies and problems of CSCD are analyzed and a CSCD design frame faced to product ...Computer supported collaborative design (CSCD) technology has been applied extensively with intensive market competition.The key technologies and problems of CSCD are analyzed and a CSCD design frame faced to product design is estab- lished.Then a CSCD system faced to radar key components is founded with Pro/INTRALINK software and re-exploiting technolo- gy.Some key processes are also designed,such as database management,work flow programming,information communication, file release,conflict identification and safety management.These will provide a reference for constructing a cooperative design en- vironment.展开更多
The rapid development of micro-electronics raises the demand of their power sources to be simplified,miniaturized and highly integratable with other electronics on a chip.In-plane Micro-sized energy storage devices(ME...The rapid development of micro-electronics raises the demand of their power sources to be simplified,miniaturized and highly integratable with other electronics on a chip.In-plane Micro-sized energy storage devices(MESDs),which are composed of interdigitated electrodes on a single chip,have aroused particular attentions since they could be easily integrated with other miniaturized electronics,reducing the complexity of overall chip design via removing complex interconnections with bulky power sources.This review highlights the achievements in the device fabrication of in-plane MESDs,as well as their integration and intelligent designs.We also discussed the current challenges and future perspectives for the development of in-plane MESDs.展开更多
A new fuzzy adaptive control method is proposed for a class of strict feedback nonlinear systems with immeasurable states and full constraints.The fuzzy logic system is used to design the approximator,which deals with...A new fuzzy adaptive control method is proposed for a class of strict feedback nonlinear systems with immeasurable states and full constraints.The fuzzy logic system is used to design the approximator,which deals with uncertain and continuous functions in the process of backstepping design.The use of an integral barrier Lyapunov function not only ensures that all states are within the bounds of the constraint,but also mixes the states and errors to directly constrain the state,reducing the conservativeness of the constraint satisfaction condition.Considering that the states in most nonlinear systems are immeasurable,a fuzzy adaptive states observer is constructed to estimate the unknown states.Combined with adaptive backstepping technique,an adaptive fuzzy output feedback control method is proposed.The proposed control method ensures that all signals in the closed-loop system are bounded,and that the tracking error converges to a bounded tight set without violating the full state constraint.The simulation results prove the effectiveness of the proposed control scheme.展开更多
基金The Chongqing University of Engineering for 2024 Construction Project Landscape for Comprehensive Project Library:Riverfront Space Renewal Project of Diaoyuzui Peninsula,Dadukou,Chongqing(Project No.2024-JZ-XMK054-XM083)。
文摘To enhance our talent cultivation model through“school-enterprise cooperation and industry-teaching fusion”,we aim to improve the“4321”Industry-Education Integration System.This includes actively promoting the use of case banks and project banks in teaching to develop students’practical engineering skills through hands-on application of professional knowledge.Additionally,landscape design courses emphasize practical learning experiences to implement the fundamental goal of“cultivating morality”.Guided by enhancing students’practical skills,we ensure alignment with course objectives and professional training requirements,emphasizing the seamless integration of theory and practice.
基金University-Level Teaching Reform Project“Research on Effective Models and Pathways for University-Enterprise Co-Construction of an Industry College Based on the School of Architecture and Urban Industry”(Q2310003)。
文摘To further enhance the effectiveness of talent cultivation for interior design in vocational colleges,it is necessary to vigorously promote the construction of an industry-education integration model.Through this model,the roles of both enterprises and schools can be leveraged to jointly facilitate the continuous improvement of students’professional abilities and practical skills,providing a steady stream of high-quality talents for the development of the interior design field.Therefore,this paper analyzes the current issues in interior design talent cultivation in vocational colleges from the perspective of industry-education integration and proposes corresponding improvement measures.
文摘With the upgrading of industries,the cosmetics industry has posed new requirements for technical talents.As a professional core course in cosmetic technology,“Cosmetic Product Formulation Design and Preparation Technology”serves as the foundation for cultivating students’abilities in cosmetic development and preparation.To foster high-quality skilled talents capable of adapting to the rapid growth of color cosmetics and to better promote the deep integration of scientific and technological industries with curriculum teaching,the teacher team embarked on active explorations and practical teaching research for curriculum teaching reform from four dimensions:strengthening top-level design,enriching teaching content,optimizing teaching design,and reforming assessment methods.These efforts have enhanced students’comprehensive vocational qualities and innovative consciousness,contributing to the teaching reform in higher vocational colleges under the integration of industry,education,and research.
基金Supported by National Natural Science Foundation of China (52104029,U2139204)PetroChina Science and Technology Innovation Foundation (2021 DQ02-0501)。
文摘According to the variable toe-to-heel well spacing, combined with the dislocation theory, discrete lattice method, and finite-element-method(FEM) based fluid-solid coupling, an integrated geological-engineering method of volume fracturing for fan-shaped well pattern is proposed considering the geomechanical modeling, induced stress calculation, hydraulic fracturing simulation, and post-frac productivity evaluation. Besides, we propose the differential fracturing design for the conventional productivity-area and the potential production area for fan-shaped horizontal wells. After the fracturing of the conventional production area for H1 fan-shaped well platform, the research shows that the maximum reduction of the horizontal principal stress difference in the potential productivity-area is 0.2 MPa, which cannot cause the stress reversal, but this reduction is still conducive to the lateral propagation of hydraulic fractures. According to the optimized fracturing design, in zone-Ⅰ of the potential production area, only Well 2 is fractured, with a cluster spacing of 30 m and an injection rate of 12 m^(3)/min per stage;in zone-Ⅱ, Well 2 is fractured before Well 3, with a cluster spacing of 30 m and an injection rate of 12 m^(3)/min per stage. The swept area of the pore pressure drop in the potential production area is small, showing that the reservoir is not well developed. The hydraulic fracturing in the toe area can be improved by, for example, properly densifying the fractures and adjusting the fracture distribution, in order to enhance the swept volume and increase the reservoir utilization.
文摘With the accelerated development and utilization of urban underground space,the underground space design of complex based on rail transit has attracted much attention.By sorting out the integration concept and constructing the logical framework of integrated design,the integrated design strategy is proposed from the aspects of function,transportation,space and environment on the urban scale,and the evaluation points of integrated design effect are put forward from the aspects of accessibility,coordination,openness and symbolism.
文摘A blank panel design algorithm based on feature mapping methods for integral wing skin panels with supercritical airfoil surface is presented.The model of a wing panel is decomposed into features,and features of the panel are decomposed into information of location,direction,dimension and Boolean types.Features are mapped into the plane through optimal surface development algorithm.The plane panel is modeled by rebuilding the mapped features.Blanks of shot-peen forming panels are designed to identify the effectiveness of the methods.
基金supported in part by the National Natural Science Foundation of China under Grant 62271142in part by the Key Research and Development Program of Jiangsu Province BE2023021+2 种基金in part by the Jiangsu Key Research and Development Program Project under Grant BE2023011-2in part by the Young Scholar Funding of Southeast Universityin part by the Fundamental Research Funds for the Central Universities 2242022k60001。
文摘In this paper,we formulate the precoding problem of integrated sensing and communication(ISAC)waveform as a non-convex quadratically constrained quadratic programming(QCQP),in which the weighted sum of communication multi-user interference(MUI)and the gap between dual-use waveform and ideal radar waveform is minimized with peak-toaverage power ratio(PAPR)constraints.We propose an efficient algorithm based on alternating direction method of multipliers(ADMM),which is able to decouple multiple variables and provide a closed-form solution for each subproblem.In addition,to improve the sensing performance in both spatial and temporal domains,we propose a new criteria to design the ideal radar waveform,in which the beam pattern is made similar to the ideal one and the integrated sidelobe level of the ambiguity function in each target direction is minimized in the region of interest.The limited memory Broyden-Fletcher-Goldfarb-Shanno(LBFGS)algorithm is applied to the design of the ideal radar waveform which works as a reference in the design of the dual-function waveform.Numerical results indicate that the designed dual-function waveform is capable of offering good communication quality of service(QoS)and sensing performance.
文摘This work provides an overview of distillation processes,including process design for different distillation processes,selection of entrainers for special distillation processes,system integration and intensification of distillation processes,optimization of process parameters for distillation processes and recent research progress in dynamic control strategies.Firstly,the feasibility of using thermodynamic topological theories such as residual curve,phase equilibrium line and distillation boundary line to analyze different separation regions is discussed,and the rationality of distillation process design is discussed by using its feasibility.Secondly,the application of molecular simulation methods such as molecular dynamics simulation and quantum chemical calculation in the screening of entrainer is discussed for the extractive distillation process.The thermal coupling mechanism of different distillation processes is used to explore the process of different process intensifications.Next,a mixed integer nonlinear optimization strategy for the distillation process based on different algorithms is introduced.Finally,the improvement of dynamic control strategies for different distillation processes in recent years is summarized.This work focuses on the application of process intensification and system optimization in the design of distillation process,and analyzes the challenges,prospects,and development trends of distillation technology in the separation of multicomponent azeotropes.
基金supported in part by National Key R&D Program of China under Grant No.2021YFB2900200in part by National Natural Science Foundation of China under Grant Nos.U20B2039 and 62301032in part by China Postdoctoral Science Foundation under Grant No.2023TQ0028.
文摘Integrated sensing and communication(ISAC)is regarded as a pivotal technology for 6G communication.In this paper,we employ Kullback-Leibler divergence(KLD)as the unified performance metric for ISAC systems and investigate constellation and beamforming design in the presence of clutters.In particular,the constellation design problem is solved via the successive convex approximation(SCA)technique,and the optimal beamforming in terms of sensing KLD is proven to be equivalent to maximizing the signal-to-interference-plus-noise ratio(SINR)of echo signals.Numerical results demonstrate the tradeoff between sensing and communication performance under different parameter setups.Additionally,the beampattern generated by the proposed algorithm achieves significant clutter suppression and higher SINR of echo signals compared with the conventional scheme.
文摘According to the operational characteristics of the logistics networks for the third party logistics supplier (3PLS), the forward and reverse logistics networks together for 3PLS under the uncertain environment are designed. First, a fuzzy model is proposed by taking multiple customers, multiple commodities, capacitated facility location and integrated logistics facility layout into account. In the model, the fuzzy customer demands and transportation rates are illustrated by triangular fuzzy numbers. Secondly, the fuzzy model is converted into a crisp model by applying fuzzy chance constrained theory and possibility theory, and one hybrid genetic algorithm is designed for the crisp model. Finally, two different examples are designed to illustrate that the model and solution discussed are valid.
基金supported by the National Natural Science Foundation of China(6123101761671352)
文摘Orthogonal frequency division multiplexing (OFDM) waveform enables radar and communication functions simultaneously, which encounters low angle resolution and poor data rate for traditional single input single output (SISO) systems. To solve these problems, an integrated radar and communication system (IRCS) with multiple input multiple output (MIMO) OFDM waveform is proposed. The different limitations of radar and communication in designing such a system are investigated. Then, an optimization problem is devised to obtain suitable system parameters, including the number of subcarriers, subcarrier spacing, number of symbols, pulse repetition frequency (PRF) and length of cyclic prefix (CP). Finally, to satisfy the requirements of both radar and communication, the IRCS parameters are derived in three typical cases. Several numerical results are presented to illustrate the demands of radar and communication, inconsistent or consistent, for the IRCS parameters and the superiority of the proposed system.
文摘In the case of the given design variables and constraint functions, this paper is concerned with the rapid overall parameters design of trajectory, propulsion and aerodynamics for long-range ballistic missiles based on the index of the minimum take-off mass.In contrast to the traditional subsystem independent design, this paper adopts the research idea of the combination of the subsystem independent design and the multisystem integration design.Firstly, the trajectory, propulsion and aerodynamics of the subsystem are separately designed by the engineering design, including the design of the minimum energy trajectory, the computation of propulsion system parameters, and the calculation of aerodynamic coefficient and dynamic derivative of the missile by employing the software of missile DATCOM. Then, the uniform design method is used to simplify the constraint conditions and the design variables through the integration design, and the accurate design of the optimized variables would be accomplished by adopting the uniform particle swarm optimization(PSO) algorithm. Finally, the automation design software is written for the three-stage solid ballistic missile. The take-off mass of 29 850 kg is derived by the subsystem independent design, and 20 constraints are reduced by employing the uniform design on the basis of 29 design variables and 32 constraints, and the take-off mass is dropped by 1 850 kg by applying the combination of the uniform design and PSO. The simulation results demonstrate the effectiveness and feasibility of the proposed hybrid optimization technique.
文摘As an important sensor in the navigation systems,star sensors and the gyro play important roles in spacecraft attitude determination system.Complex environmental factors are the main sources of error in attitude determination.The error influence of different benchmarks and the disintegration mode between the star sensor and the gyro is analyzed in theory.The integrated design of the star sensor and the gyro on the same benchmark can effectively avoid the error influence and improves the spacecraft attitude determination accuracy.Simulation results indicate that when the stars sensor optical axis vectors overlap the reference coordinate axis of the gyro in the same benchmark,the attitude determination accuracy improves.
基金financially supported by the National Natural Science Foundation of China(Grant No.51109132)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20110073120015)
文摘The design of Human Occupied Vehicle (HOV) is a typical multidisciplinary problem, but heavily dependent on the experience of naval architects at present engineering design. In order to relieve the experience dependence and improve the design, a new Multidisciplinary Design Optimization (MDO) method "Bi-Level Integrated System Collaborative Optimization (BLISCO)" is applied to the conceptual design of an HOV, which consists of hull module, resistance module, energy module, structure module, weight module, and the stability module. This design problem is defined by 21 design variables and 23 constraints, and its objective is to maximize the ratio of payload to weight. The results show that the general performance of the HOV can be greatly improved by BLISCO.
基金Supported by the National High Technology Re-search and Development Programof China(2003AA411011)
文摘Some key issues in supporting collaborative design in product data management(PDM ) system and 3D computer aided design(CAD) system integrated environment are analyzed. The general architecture of the integrated environment is divided into five tiers and employs the transparently integrated mode, with the mode, function calling and information exchanging among independent PDM and CAD processes are carried out via message translation /parse approach. Product layout feature(PLF ) model definition is presented, PLF model is used to represent design intention at the preliminary design phase. The collaborative design methodology employing the PLF model in PDM/3D CAD integrated environment is analyzed. The design methodology can speed up the design process, reduce the investment and improve the product quality.
文摘Based on fundamental principles of ecology ,the ecological philosophy connotation of Feng-Shui(Wind and Water) concept from experiences of Chinese agricultural culture was first discussed , and then hu-man-ecological implications of Feng-Shui environment architecture is analyzed. As a theoretical integrationbetween human ecology and Feng-Shui theory ,“environment” and “environmental design” concepts were re-examined and given new definitions. With holistic principles of human ecological design in the context ofFeng-Shui , essential technical ways of integrative human ecological design were explored in the presentationof a case study of an urban environmental design in east China.
基金the National Key Research and Development Program of China under Grant No.2018YFB2200403the National Natural Science Foundation of China under Grant Nos.11734001,91950204,92150302.
文摘The basic indexes of all-optical integrated photonic circuits include high-density integration,ultrafast response and ultralow energy consumption.Traditional methods mainly adopt conventional micro/nano-structures.The overall size of the circuit is large,usually reaches hundreds of microns.Besides,it is difficult to balance the ultrafast response and ultra-low energy consumption problem,and the crosstalk between two traditional devices is difficult to overcome.Here,we propose and experimentally demonstrate an approach based on inverse design method to realize a high-density,ultrafast and ultra-low energy consumption integrated photonic circuit with two all-optical switches controlling the input states of an all-optical XOR logic gate.The feature size of the whole circuit is only 2.5μm×7μm,and that of a single device is 2μm×2μm.The distance between two adjacent devices is as small as 1.5μm,within wavelength magnitude scale.Theoretical response time of the circuit is 150 fs,and the threshold energy is within 10 fJ/bit.We have also considered the crosstalk problem.The circuit also realizes a function of identifying two-digit logic signal results.Our work provides a new idea for the design of ultrafast,ultra-low energy consumption all-optical devices and the implementation of high-density photonic integrated circuits.
基金Funded by Tackling Item of Minister of Science and Technology(2001BA201A56)
文摘Computer supported collaborative design (CSCD) technology has been applied extensively with intensive market competition.The key technologies and problems of CSCD are analyzed and a CSCD design frame faced to product design is estab- lished.Then a CSCD system faced to radar key components is founded with Pro/INTRALINK software and re-exploiting technolo- gy.Some key processes are also designed,such as database management,work flow programming,information communication, file release,conflict identification and safety management.These will provide a reference for constructing a cooperative design en- vironment.
基金supported by the Ministry of Science and Technology of China(Grant No.2019YFA0705600)the National Natural Science Foundation of China(Grant Nos.51822205,21875121)+2 种基金the Natural Science Foundation of Tianjin(Grant Nos.18JCJQJC46300,19JCZDJC31900)the Ministry of Education of China(Grant No.B12015)the “Frontiers Science Center for New Organic Matter”,Nankai University(Grant No.63181206)。
文摘The rapid development of micro-electronics raises the demand of their power sources to be simplified,miniaturized and highly integratable with other electronics on a chip.In-plane Micro-sized energy storage devices(MESDs),which are composed of interdigitated electrodes on a single chip,have aroused particular attentions since they could be easily integrated with other miniaturized electronics,reducing the complexity of overall chip design via removing complex interconnections with bulky power sources.This review highlights the achievements in the device fabrication of in-plane MESDs,as well as their integration and intelligent designs.We also discussed the current challenges and future perspectives for the development of in-plane MESDs.
基金supported in part by the National Natural Science Foundation of China(6202530361973147)the LiaoNing Revitalization Talents Program(XLYC1907050)。
文摘A new fuzzy adaptive control method is proposed for a class of strict feedback nonlinear systems with immeasurable states and full constraints.The fuzzy logic system is used to design the approximator,which deals with uncertain and continuous functions in the process of backstepping design.The use of an integral barrier Lyapunov function not only ensures that all states are within the bounds of the constraint,but also mixes the states and errors to directly constrain the state,reducing the conservativeness of the constraint satisfaction condition.Considering that the states in most nonlinear systems are immeasurable,a fuzzy adaptive states observer is constructed to estimate the unknown states.Combined with adaptive backstepping technique,an adaptive fuzzy output feedback control method is proposed.The proposed control method ensures that all signals in the closed-loop system are bounded,and that the tracking error converges to a bounded tight set without violating the full state constraint.The simulation results prove the effectiveness of the proposed control scheme.