GeO_(2) is commonly used as dopant to adjust the refractive index profile(RIP)and the acoustic velocity profile(AVP)in the fiber,thereby forming different Brillouin gain spectrum(BGS)characteristics such as Brillouin ...GeO_(2) is commonly used as dopant to adjust the refractive index profile(RIP)and the acoustic velocity profile(AVP)in the fiber,thereby forming different Brillouin gain spectrum(BGS)characteristics such as Brillouin gain,acoustic mode number and peak intensity difference.When an optical fiber is used in optical fiber sensing or communication system,its BGS characteristics may play an important role in determining the performance of the system.In this paper,finite element analysis(FEA)method is used to study the influence of refractive index distribution and its corresponding AVP on the BGS in step-index,graded-index,and complex-index optical fibers.A new method has also been proposed to efficiently discriminate acoustic mode solution and obtain the new and full images of total Brillouin gain and acoustic modes number of the fiber as a function of the refractive index distribution,considering the influence of changing the refractive index difference and the geometric size simultaneously.For each type of optical fiber,the recommended parameter range is provided for optical fiber sensing and optical fiber communication.Moreover,the suitable optical fiber with close peak intensity in its multi-peak BGS is explored and achieved,which can be used in Brillouin beat spectrum detection systems to improve sensing accuracy.展开更多
The dependence of Brillouin gain spectrum(BGS)characteristics,including the Brillouin frequency shift(BFS)and the BGS bandwidth,on germanium concentration in large-mode-area Ge-doped passive fibers is investigated the...The dependence of Brillouin gain spectrum(BGS)characteristics,including the Brillouin frequency shift(BFS)and the BGS bandwidth,on germanium concentration in large-mode-area Ge-doped passive fibers is investigated theoretically and experimentally.The simulation results show that the BFS is inversely proportional to GeO_(2)concentration,and the BGS bandwidth initially increases with the augment of GeO_(2)concentration,and then decreases.The BGSs of four fibers with core diameters of 10μm and 20μm for different GeO_(2)concentrations are compared experimentally.Experimental results demonstrate that with the same core diameter,the variations of BFS and BGS bandwidths with GeO_(2)concentration accord with the simulation results.Additionally,the BGS characteristics of three large-mode-area passive fibers with diameters of 10μm,25μm,and 30μm are measured,which confirm that the increasing of the fiber diameters will cause the BGS bandwidth to broaden.We believe that these results can provide valuable references for modulating the high-power narrowlinewidth fiber lasers and Brillouin fiber amplifiers.展开更多
Using a pump with a multi-line spectrum to broaden the Brillouin gain bandwidth is an effective way to achieve lowdistortion amplification with high gain. Here, we theoretically and experimentally investigate the gene...Using a pump with a multi-line spectrum to broaden the Brillouin gain bandwidth is an effective way to achieve lowdistortion amplification with high gain. Here, we theoretically and experimentally investigate the generation of a broadband Brillouin gain spectrum based on multi-frequency intensity modulation in an optical fiber. The arbitrary bandwidth of the Brillouin gain spectrum of stimulated Brillouin scattering(SBS) can be obtained as expected. In our experiment, a broadband Brillouin gain spectrum with a bandwidth of about 200 MHz is demonstrated. We also achieve a low-distortion amplification of a weak signal, whose maximum magnification is 65 d B for a-68-dBm input power signal.展开更多
基金supported by the National Natural Science Foundation of China(Nos.61875086,61377086)Aerospace Science Foundation of China(No.2016ZD52042)Foundation of Graduate Innovation Center in Nanjing University of Aeronautics and Astronautics(No.kfjj20170801)。
文摘GeO_(2) is commonly used as dopant to adjust the refractive index profile(RIP)and the acoustic velocity profile(AVP)in the fiber,thereby forming different Brillouin gain spectrum(BGS)characteristics such as Brillouin gain,acoustic mode number and peak intensity difference.When an optical fiber is used in optical fiber sensing or communication system,its BGS characteristics may play an important role in determining the performance of the system.In this paper,finite element analysis(FEA)method is used to study the influence of refractive index distribution and its corresponding AVP on the BGS in step-index,graded-index,and complex-index optical fibers.A new method has also been proposed to efficiently discriminate acoustic mode solution and obtain the new and full images of total Brillouin gain and acoustic modes number of the fiber as a function of the refractive index distribution,considering the influence of changing the refractive index difference and the geometric size simultaneously.For each type of optical fiber,the recommended parameter range is provided for optical fiber sensing and optical fiber communication.Moreover,the suitable optical fiber with close peak intensity in its multi-peak BGS is explored and achieved,which can be used in Brillouin beat spectrum detection systems to improve sensing accuracy.
基金Project supported by the Key-Area Research and Development Program of Guangdong Province,China(Grant No.2018B090904001)the National Natural Science Foundation of China(Grant Nos.61805261,61405202,and 61705243)the Youth Innovation Promotion Association,Chinese Academy of Sciences(Grant No.2020252)。
文摘The dependence of Brillouin gain spectrum(BGS)characteristics,including the Brillouin frequency shift(BFS)and the BGS bandwidth,on germanium concentration in large-mode-area Ge-doped passive fibers is investigated theoretically and experimentally.The simulation results show that the BFS is inversely proportional to GeO_(2)concentration,and the BGS bandwidth initially increases with the augment of GeO_(2)concentration,and then decreases.The BGSs of four fibers with core diameters of 10μm and 20μm for different GeO_(2)concentrations are compared experimentally.Experimental results demonstrate that with the same core diameter,the variations of BFS and BGS bandwidths with GeO_(2)concentration accord with the simulation results.Additionally,the BGS characteristics of three large-mode-area passive fibers with diameters of 10μm,25μm,and 30μm are measured,which confirm that the increasing of the fiber diameters will cause the BGS bandwidth to broaden.We believe that these results can provide valuable references for modulating the high-power narrowlinewidth fiber lasers and Brillouin fiber amplifiers.
基金Project supported by the National Natural Science Foundation of China(Grant No.61605034)
文摘Using a pump with a multi-line spectrum to broaden the Brillouin gain bandwidth is an effective way to achieve lowdistortion amplification with high gain. Here, we theoretically and experimentally investigate the generation of a broadband Brillouin gain spectrum based on multi-frequency intensity modulation in an optical fiber. The arbitrary bandwidth of the Brillouin gain spectrum of stimulated Brillouin scattering(SBS) can be obtained as expected. In our experiment, a broadband Brillouin gain spectrum with a bandwidth of about 200 MHz is demonstrated. We also achieve a low-distortion amplification of a weak signal, whose maximum magnification is 65 d B for a-68-dBm input power signal.