In this paper, the concept of “green processing” will be applied, while explaining the role of sustainable development strategy with respect to the environmental issue. Two parameters are considered in the study by ...In this paper, the concept of “green processing” will be applied, while explaining the role of sustainable development strategy with respect to the environmental issue. Two parameters are considered in the study by utilizing carbon dioxide and reject brine from desalination plants as raw materials to produce valuable chemical products and partially desalinated water.展开更多
The mineral rock salts present in the Mahai Salt Lake of the Qaidam basin exhibit high solubilities in water. In addition, the multicomponent underground brine exhibits a high salinity and is easily precipitated. In t...The mineral rock salts present in the Mahai Salt Lake of the Qaidam basin exhibit high solubilities in water. In addition, the multicomponent underground brine exhibits a high salinity and is easily precipitated. In the natural state, brine transport in the brine layer is extremely slow, and the brine is in a relatively stable chemical equilibrium state with the rock salt media. However, during mining, both the seepage and the chemical fields fluctuate significantly, thereby disrupting the equilibrium and leading to variations in the chemical composition and dynamic characteristics of the brine. Therefore, we selected underground brine from the Mahai Salt Lake, collecting a total of 183 brine samples over three stages of mining(i.e., the early stage of underground brine extraction, the initial stage of mining, and the later stage of mining). Using a range of analytical techniques, the chemical dynamics of the underground brine water and its evolution were systematically studied. We found that evaporation and enrichment were the main mechanisms of underground brine evolution in the Mahai Salt Lake, with cation exchange and mineral dissolution/precipitation being key factors in determining the dynamic characteristics and evolution of the brine.展开更多
Brine salty water that is produced from Reverse Osmosis desalination plants usually has very large quantity and contains much higher salts ratio than that found in the sea. The disposal of such brine water has risks o...Brine salty water that is produced from Reverse Osmosis desalination plants usually has very large quantity and contains much higher salts ratio than that found in the sea. The disposal of such brine water has risks on environment. The objective of the research is to investigate the best brine disposal option in Gaza Strip. Five options for the disposal of brine were studied: 1) disposal of brine to the sea;2) discharge of brine to wastewater plant;3) deep well injection;4) evaporation pond and 5) land irrigation. The new desalination plant Short-Term Low Volume (STLV) of a capacity of 6000 m3/d was used as a case study. Initially, the cost for each option was calculated separately, where it was found that the least cost is to pump the brine to the sea without affecting the seawater and marine life. To support this decision, two methods were used to reach the optimal option for the disposal of brine: Multi-Criteria Analysis (MCA) and Analytic Hierarchy Process (AHP). In MCA the measurement includes: economic, environmental, technical, political and social aspects, depending on a group of academics and experts in that field to fill in the questionnaire, which is a part of the analysis. As a result of that, the highest percentage among other options goes to pump the brine directly to the sea. On the other hand, the second method, which is Analytic Hierarchy Process (AHP), used the method of matrices among the different options and linked it with the standards that have been selected in the first method (MCDA). AHP method indicated also the best disposal of brine by pumping the brine to the sea.展开更多
文摘In this paper, the concept of “green processing” will be applied, while explaining the role of sustainable development strategy with respect to the environmental issue. Two parameters are considered in the study by utilizing carbon dioxide and reject brine from desalination plants as raw materials to produce valuable chemical products and partially desalinated water.
基金the support of the National Natural Science Foundation of China(41672243,41877198)
文摘The mineral rock salts present in the Mahai Salt Lake of the Qaidam basin exhibit high solubilities in water. In addition, the multicomponent underground brine exhibits a high salinity and is easily precipitated. In the natural state, brine transport in the brine layer is extremely slow, and the brine is in a relatively stable chemical equilibrium state with the rock salt media. However, during mining, both the seepage and the chemical fields fluctuate significantly, thereby disrupting the equilibrium and leading to variations in the chemical composition and dynamic characteristics of the brine. Therefore, we selected underground brine from the Mahai Salt Lake, collecting a total of 183 brine samples over three stages of mining(i.e., the early stage of underground brine extraction, the initial stage of mining, and the later stage of mining). Using a range of analytical techniques, the chemical dynamics of the underground brine water and its evolution were systematically studied. We found that evaporation and enrichment were the main mechanisms of underground brine evolution in the Mahai Salt Lake, with cation exchange and mineral dissolution/precipitation being key factors in determining the dynamic characteristics and evolution of the brine.
文摘Brine salty water that is produced from Reverse Osmosis desalination plants usually has very large quantity and contains much higher salts ratio than that found in the sea. The disposal of such brine water has risks on environment. The objective of the research is to investigate the best brine disposal option in Gaza Strip. Five options for the disposal of brine were studied: 1) disposal of brine to the sea;2) discharge of brine to wastewater plant;3) deep well injection;4) evaporation pond and 5) land irrigation. The new desalination plant Short-Term Low Volume (STLV) of a capacity of 6000 m3/d was used as a case study. Initially, the cost for each option was calculated separately, where it was found that the least cost is to pump the brine to the sea without affecting the seawater and marine life. To support this decision, two methods were used to reach the optimal option for the disposal of brine: Multi-Criteria Analysis (MCA) and Analytic Hierarchy Process (AHP). In MCA the measurement includes: economic, environmental, technical, political and social aspects, depending on a group of academics and experts in that field to fill in the questionnaire, which is a part of the analysis. As a result of that, the highest percentage among other options goes to pump the brine directly to the sea. On the other hand, the second method, which is Analytic Hierarchy Process (AHP), used the method of matrices among the different options and linked it with the standards that have been selected in the first method (MCDA). AHP method indicated also the best disposal of brine by pumping the brine to the sea.