期刊文献+
共找到35篇文章
< 1 2 >
每页显示 20 50 100
Effect of Adhesive Type on the Quality of Coconut Shell Charcoal Briquettes Prepared by the Screw Extruder Machine
1
作者 Samsudin Anis Deni Fajar Fitriyana +7 位作者 Aldias Bahatmaka Muhammad Choirul Anwar Arsyad Zanadin Ramadhan Fajar Chairul Anam Raffanel Adi Permana Ahmad Jazilussurur Hakim Natalino Fonseca Da Silva Guterres Mateus De Sousa Da Silva 《Journal of Renewable Materials》 EI CAS 2024年第2期381-396,共16页
Indonesia is one of the largest coconut-producing countries in the world.The utilization of coconut shell waste into briquettes will increase the selling value and become a great export opportunity.However,the effect ... Indonesia is one of the largest coconut-producing countries in the world.The utilization of coconut shell waste into briquettes will increase the selling value and become a great export opportunity.However,the effect of adhesives on the quality of coconut shell charcoal briquettes made using screw extruder machine has not been widely studied.This study aims to determine the effect of adhesive type on the quality of coconut shell charcoal briquettes.The process of fabricating briquettes in this study included crushing,mixing,blending,pressing,and drying.In the mixing process,3 types of adhesives were used,namely tapioca flour(Briquette_1),cassava flour(Briquette_2),and modified cassava flour(Briquette_3)with a concentration of 5%of the weight of coconut shell charcoal powders.The quality of the resulting briquettes and commercial briquettes will be evaluated by moisture content,ash content,volatile matter,fixed carbon,calorific value,density,compressive,and drop test testing.The results of this research showed that the type of adhesive had a significant effect on the quality of the briquettes produced.Specimen Briquette_1 had better quality than commercial briquettes(Briquette_4)and other briquette specimens.The test results showed that Briquette_1 produced briquettes with better compressive strength and friability than the other specimens,at 6.95 N/mm^(2) and 4.44%,respectively.The moisture content,ash content,fixed carbon,and calorific value of Briquette_1 have met the requirements set by the Indonesian National Standard(SNI)number 01-6235-2000.Meanwhile,the volatile matter content and density of Briquette_1 are by the standards of Japan and the United States America(USA). 展开更多
关键词 COCONUT charcoal BRIQUETTES ADHESIVE MIXING BLENDING PRESSING
下载PDF
Physico-Chemical Characterization of Nine Agricultural Biomasses of the Togolese Flora
2
作者 Adjo Cynthia Kouakou Agbekonyi Kokou Agbodan +4 位作者 Awèdéou Bakpo Moursalou Koriko Koffi Fiaty Simalou Oudjaniyobi Koffi Jondo 《International Journal of Geosciences》 CAS 2023年第1期19-35,共17页
Green coal or bio-coal is coal produced with rich biodegradable materials, elaborated from agricultural and household residues with a high percentage of carbon. This green charcoal (fuel briquettes) is an alternative ... Green coal or bio-coal is coal produced with rich biodegradable materials, elaborated from agricultural and household residues with a high percentage of carbon. This green charcoal (fuel briquettes) is an alternative to charcoal. Well known for its contribution to greenhouse gas emissions, charcoal is one of the causes of tree felling. The valorization of waste by the manufacture of biofuels could be an alternative to the use of charcoal. The general objective of the present study is the valorization of nine biomasses from Togo as raw materials. Specifically, physico-chemical characteristics such as dehydration, acidity, and conductivity were determined. Information on the structure and composition of the biomass was found. These data on the nature of the biomass were found through the use of Fourier Transform Infrared (FTIR) and Thermogravimetry (TGA). The promising results inform on the nature of the analyzed samples and allow the selection of the best biomass which would give an important thermal conductivity for the manufacture of the briquettes, but also of the binders to be used according to the physico-chemical characteristics like the pH. 展开更多
关键词 BIOMASS VALORIZATION BRIQUETTES MATERIAL Fuels Physicochemical Characterization
下载PDF
装运澳洲特制煤砖自燃事故分析
3
作者 郭丰田 《天津航海》 2000年第1期3-5,共3页
M轮在澳大利亚装运特制煤砖(BRIQUETTE)时,由于对这类货物的性质和须遵守的专门预防措施缺乏了解,进行了不正确的配、积载,酿成了货物自燃。本文对这起事故原因进行分析,并针对干散货物运输提出几点启示,以供借鉴。
关键词 煤砖 BRIQUETTE 自燃 船舶运输
下载PDF
Reduction process and zinc removal from composite briquettes composed of dust and sludge from a steel enterprise 被引量:13
4
作者 Lei-ge Xia Rui Mao +3 位作者 Jian-liang Zhang Xiang-nan Xu Meng-fang Wei Fei-hua Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第2期122-131,共10页
In this study, composite briquettes were prepared using gravity dust and converter sludge as the main materials; these briquettes were subsequently reduced in a tube furnace at 1000-1300℃ for 5-30 min under a nitroge... In this study, composite briquettes were prepared using gravity dust and converter sludge as the main materials; these briquettes were subsequently reduced in a tube furnace at 1000-1300℃ for 5-30 min under a nitrogen atmosphere. The effects of reaction temperature, reaction time, and carbon content on the metallization and dezincification ratios of the composite briquettes were studied. The reduced com- posite briquettes were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). The results show that the gravity dust and converter sludge are combined into the composite briquettes and a reasonable combination not only improves the performance of the composite briquettes, but also leads to the reduction with no or little reductant and flux. As the re- action temperature is increased and the reaction time is extended, the metallization and dezincification ratios of the composite briquettes in- crease gradually. When the composite briquettes are roasted at 1300℃ for 30 rain, the metallization ratio and dezineification ratio reaches 91.35% and 99.25%, respectively, indicating that most of the iron oxide is reduced and the zinc is almost completely removed. The carbon content is observed to exert a lesser effect on the reduction process; as the C/O molar ratio increases, the metallization and dezincification ra- tios first increase and then decrease. 展开更多
关键词 solid waste recycling DUST SLUDGE composite briquettes REDUCTION removal of zinc
下载PDF
Basic properties of steel plant dust and technological properties of direct reduction 被引量:6
5
作者 Xue-feng She Jing-song Wang +4 位作者 Qing-guo Xue Yin-gui Ding Sheng-sheng Zhang Jie-ji Dong Hui Zeng 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2011年第3期277-284,共8页
Basic physicochemical properties of the dust from Laiwu Iron and Steel Co. Ltd. were studied. It is found that C, Zn, K, Na, etc. exist in the fabric filter dust, off gas (OG) sludge, fine ash in converter, and elec... Basic physicochemical properties of the dust from Laiwu Iron and Steel Co. Ltd. were studied. It is found that C, Zn, K, Na, etc. exist in the fabric filter dust, off gas (OG) sludge, fine ash in converter, and electrical field dust in sinter. Among these, OG sludge gives the finest particle, more than 90% of which is less than 2.51 mm. The dust can lead to a serious negative influence on the production of sintering and blast furnaces (BF) if it is recycled in sintering. The briquette and reduction experimental results showed that the qualified strength could be obtained in the case of 8wt% molasses or 4wt% QT-10 added as binders. Also, more than 75% of metallization ratio, more than 95% of dezincing ratio, as well as more than 80% of K and Na removal rates were achieved for the briquettes kept at 1250℃ for 15 min during the direct reduction process. SEM observation indicated that the rates of indirect reduction and carbonization became dominating when the bri-quettes were kept at 1250℃ for 6 min. 展开更多
关键词 steel metallurgy DUST ZINC direct reduction process BRIQUETTES
下载PDF
Using HyperCoal to prepare metallurgical coal briquettes via hot-pressing 被引量:4
6
作者 Ya-jie Wang Hai-bin Zuo +1 位作者 Jun Zhao Wan-long Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2019年第5期547-554,共8页
HyperCoal was prepared from low-rank coal via high-temperature solvent extraction with N-methylpyrrolidone as an extraction solvent and a liquid-to-solid ratio of 50 mL/g in a high-temperature and high-pressure reacto... HyperCoal was prepared from low-rank coal via high-temperature solvent extraction with N-methylpyrrolidone as an extraction solvent and a liquid-to-solid ratio of 50 mL/g in a high-temperature and high-pressure reactor. When HyperCoal was used as a binder and pulverized coal was used as the raw material, the compressive strength of the hot-pressed briquettes(each with a diameter of 20 mm and mass of 5 g) under different conditions was studied using a hot-pressing mold and a high-temperature furnace. The compressive strength of the hot-pressed briquettes was substantially improved and reached 436 N when the holding time period was 15 min, the hot-pressing temperature was 673 K, and the HyperCoal content, was 15 wt%. Changes in the carbonaceous structure, as reflected by the intensity ratio between the Raman G-and D-bands(IG/ID), strongly affected the compressive strength of hot-pressed briquettes prepared at different hot-pressing temperatures. Compared with cold-pressed briquettes, hot-pressed briquettes have many advantages, including high compressive strength, low ash content, high moisture resistance, and good thermal stability; thus, we expect that hot-pressed briquettes will have broad application prospects. 展开更多
关键词 HyperCoal COAL BRIQUETTE COMPRESSIVE strength BINDER HOT-PRESSING
下载PDF
Thick free-standing electrode based on carbon-carbon nitride microspheres with large mesopores for high-energy-density lithium-sulfur batteries 被引量:2
7
作者 Hui-Ju Kang Tae-Gyu Lee +8 位作者 Heejin Kim Jae-Woo Park Hyun Jin Hwang Hyeonseok Hwang Kwang-Suk Jang Hae Jin Kim Yun Suk Huh Won Bin Im Young-Si Jun 《Carbon Energy》 CAS 2021年第3期410-423,共14页
The development of sulfur cathodes with high areal capacity and high energy density is crucial for the practical application of lithium-sulfur batteries(LSBs).LSBs can be built by employing(ultra)high-loading sulfur c... The development of sulfur cathodes with high areal capacity and high energy density is crucial for the practical application of lithium-sulfur batteries(LSBs).LSBs can be built by employing(ultra)high-loading sulfur cathodes,which have rarely been realized due to massive passivation and shuttling.Herein,microspheres of a carbon-carbon nitride composite(C@CN)with large mesopores are fabricated via molecular cooperative assembly.Using the C@CN-based electrodes,the effects of the large mesopores and N-functional groups on the electrochemical behavior of sulfur in LSB cells are thoroughly investigated under ultrahigh sulfur-loading conditions(>15 mgS cm^(-2)).Furthermore,for high-energy-density LSBs,the C@CN powders are pelletized into a thick free-standing electrode(thickness:500^m;diameter:11 mm)via a simple briquette process;here,the total amount of energy stored by the LSB cells is 39 mWh,corresponding to a volumetric energy density of 440 Wh L-1 with an areal capacity of 24.9 and 17.5 mAh cm^(-2) at 0.47 and 4.7 mA cm^(-2),respectively(at 24mgS cm^(-2)).These results have significantly surpassed most recent records due to the synergy among the large mesopores,(poly)sulfide-philic surfaces,and thick electrodes.The developed strategy with its potential for scale-up successfully fills the gap between laboratory-scale cells and practical cells without sacrificing the high areal capacity and high energy density,providing a solid foundation for the development of practical LSBs. 展开更多
关键词 briquette process carbon nitride free-standing electrode high energy density lithium-sulfur batteries MESOPORES
下载PDF
Physical and mechanical characteristics of composite briquette from coal and pretreated wood fines 被引量:1
8
作者 Adekunle Adeleke Jamiu Odusote +3 位作者 Peter Ikubanni Olumuyiwa Lasode Madhurai Malathi Dayanand Pasawan 《International Journal of Coal Science & Technology》 EI CAS CSCD 2021年第5期1088-1098,共11页
Melina wood torrefied at 260℃ for 60 min was agglomerated with lean grade coal fines into composite briquettes using pitch as binder.Torrefied biomass(3%-20%)and coal fines(80%-97%)were blended together to produce th... Melina wood torrefied at 260℃ for 60 min was agglomerated with lean grade coal fines into composite briquettes using pitch as binder.Torrefied biomass(3%-20%)and coal fines(80%-97%)were blended together to produce the composite briquettes under a hydraulic press(28 MPa).The briquettes were cured at 300℃.Density,water resistance,drop to fracture,impact resistance,and cold crushing strength were evaluated for the composite briquettes.The proximate,ultimate,and calorific value analyses were carried out according to different ASTM standards.Microstructural studies were carried out using scanning electron microscope and electron probe microanalyzer equipped with energy dispersive x-ray.Fourier Transform Infrared Spectrophotometer(FTIR)was used to obtain the functional groups in the raw materials and briquettes.The density of the composite briquettes ranged from 0.92 to 1.31 g/cm^(3) after curing.Briquettes with<10%torrefied biomass has good water resistance index(>95%).The highest cold crushing strength of 4 MPa was obtained for briquettes produced from 97%coal fines and 3%torrefied biomass.The highest drop to fracture(54 times/2 m)and impact resistance index(1350)were obtained for the sample produced from 97%coal and 3%torrefied biomass.The fixed and elemental carbons of the briquettes showed a mild improvement compared to the raw coal.The peaks from FTIR spectra for the briquettes shows the presence of aromatic C=C bonds and phenolic OH group.The composite briquettes with up to 20%torrefied biomass can all be useful as fuel for various applications. 展开更多
关键词 Composite briquettes Lean grade coal Torrefied biomass Physico-mechanical properties Combustion properties
下载PDF
Relationship between Physico-Mechanical Properties, Compacting Pressure and Mixing Proportion of Briquettes Produced from Maize Cobs and Sawdust 被引量:1
9
作者 Stephen J. Mitchual Kwasi Frimpong-Mensah Nicholas A. Darkwa 《Journal of Sustainable Bioenergy Systems》 2014年第1期50-60,共11页
This study examined the relationship between selected physico-mechanical properties, compacting pressure and mixing proportion of briquettes produced from combination of maize cob particles and sawdust of low, medium ... This study examined the relationship between selected physico-mechanical properties, compacting pressure and mixing proportion of briquettes produced from combination of maize cob particles and sawdust of low, medium and high density timber species. Particle sizes of maize cobs and sawdust used for the study were ≤1 mm. The two materials were combined at mixing percentages of 90:10, 70:30 and 50:50 (Sawdust:maize cobs). Briquettes were produced at room temperature (28°C) using compacting pressures 20, 30, 40 and 50 MPa. The results suggested that combining maize cob particles with sawdust of low, medium and high density wood species could significantly enhance the relaxed density, compressive strength in cleft and impact resistance index of briquettes produced from agricultural biomass residue like maize cobs. The results further indicated that the physical and mechanical characteristics of briquettes produced from combinations of sawdust of low density species and maize cobs were exceptionally higher than that produced from combinations of maize cob particles, and medium density and high density timber species. The R2 values for the regression model between the independent variables (mixing percentage and compacting pressure) and relaxed density, compressive strength in cleft and impact resistance index of briquettes produced from combinations of maize cob particles and sawdust of low density species (Ceiba pentandra) were 0.966, 0.932 and 0.710 respectively. This study provides a hope for briquetting maize cobs at room temperature using a low compacting pressure. 展开更多
关键词 BRIQUETTE COMPACTING PRESSURE MAIZE Cobs Mixing PROPORTIONS Physico-Mechanical Properties SAWDUST
下载PDF
Evaluation of Fuel Properties of Six Tropical Hardwood Timber Species for Briquettes 被引量:1
10
作者 Stephen J. Mitchual Kwasi Frimpong-Mensah Nicholas A. Darkwa 《Journal of Sustainable Bioenergy Systems》 2014年第1期1-9,共9页
The fuel potential of six tropical hardwood species namely: Triplochiton scleroxylon, Ceiba pentandra, Aningeria robusta, Terminalia superba, Celtis mildbreadii and Piptadenia africana were studied. Properties studied... The fuel potential of six tropical hardwood species namely: Triplochiton scleroxylon, Ceiba pentandra, Aningeria robusta, Terminalia superba, Celtis mildbreadii and Piptadenia africana were studied. Properties studied included species density, gross calorific value, volatile matter, ash content, organic carbon and elemental composition. Fuel properties were determined using standard laboratory methods. The result indicates that the gross calorific value (GCV) of the species ranged from 20.16 to 22.22 MJ/kg and they slightly varied from each other. Additionally, the GCV of the biomass materials were higher than that of other biomass materials like;wheat straw, rice straw, maize straw and sugar cane. The ash and volatile matter content varied from 0.6075 to 5.0407%, and 75.23% to 83.70% respectively. The overall rating of the properties of the six biomass materials suggested that Piptadenia africana has the best fuel property to be used as briquettes and Aningeria robusta the worse. This study therefore suggests that a holistic assessment of a biomass material needs to be done before selecting it for fuel purpose. 展开更多
关键词 ASH Content BRIQUETTE Calorific Value ELEMENTAL Composition Species VOLATILE Matter
下载PDF
Production of Fuel Briquettes from Bamboo and Agricultural Residue as an Alternative to Charcoal 被引量:1
11
作者 Patrick Mulindwa Dan Egesa +1 位作者 Anthony Osinde Esther Nyanzi 《Journal of Sustainable Bioenergy Systems》 2021年第3期105-117,共13页
The study was done to explore the potential of producing fuel briquettes that could meet the need for energy in Uganda, especially Kampala city. The primary objective of this work was to produce fuel briquettes from&l... The study was done to explore the potential of producing fuel briquettes that could meet the need for energy in Uganda, especially Kampala city. The primary objective of this work was to produce fuel briquettes from</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">homogene</span><span style="font-family:Verdana;">ous and heterogeneous combination</span><span style="font-family:Verdana;"><span style="font-family:Verdana;">s</span></span><span style="font-family:Verdana;"> of carbonized maize cobs, Bamboo</span><span style="font-family:Verdana;"> poles and charcoal dust. For the primary objective to be achieved, the main activities which were performed included;chopping bamboo poles, sorting maize cobs, carbonization, crushing, binder preparation, mixing, extrusion, drying and quality assessment of the fuel briquettes. The maize cobs and charcoal dust used for this work were purchased from the farmers and charcoal sellers respectively from </span><span style="font-family:Verdana;"><span style="font-family:Verdana;">the </span></span><span style="font-family:Verdana;">districts of Luwero and Nakaseke. Bamboo poles were provided by Divine bamboo group. The homogenous combinations included 100% maize cob char, 100% bamboo char and 100% charcoal dust. Heterogeneous combinations included 75% bamboo char + 25% charcoal dust and 25% bamboo char + 75% charcoal dust. The test results for both homogenous and heterogeneous combinations of fuel briquettes had ranges of moisture content 8%</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">11%, Volatile matter 12%</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">23%, Ash content 33%</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">39%, Heating Value 16</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">22 MJ/Kg, Fixed Carbon 30%</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">51% and moisture content 8%</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">9%, Volatile matter 13%</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">19%, Ash content 27%</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">44%, Heating Value 16</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">18 MJ/Kg, Fixed Carbon 30%</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">51% respectively. The test results for drop re</span><span style="font-family:Verdana;">sistance, density and Compressibility strength for both homogeneous and</span><span style="font-family:Verdana;"> heterogeneous combinations had ranges of 7%</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">56%, 214</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">941 kg/m</span><sup><span style="font-family:Verdana;vertical-align:super;">3</span></sup><span style="font-family:Verdana;">, 0.077</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">0.544 N/mm</span><sup><span style="font-family:Verdana;vertical-align:super;">2</span></sup><span style="font-family:Verdana;"> and 12%</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">28%, 869.1</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">958.3 kg/m</span><sup><span style="font-family:Verdana;vertical-align:super;">3</span></sup><span style="font-family:Verdana;">, 0.124</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">0.295</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">N/mm</span><sup><span style="font-family:Verdana;vertical-align:super;">2</span></sup><span style="font-family:Verdana;"> respectively. These results were within the ranges reported in </span><span style="font-family:Verdana;"><span style="font-family:Verdana;">the </span></span><span style="font-family:Verdana;">literature especially for the heterogeneous combinations. Therefore, there is the possibility to use bamboo woody feedstock in combination with other agricultural waste feedstock for </span><span style="font-family:Verdana;"><span style="font-family:Verdana;">the </span></span><span style="font-family:Verdana;">production of fuel briquettes. We can in</span><span style="font-family:Verdana;">crease the quality and production of fuel briquettes by using alternative </span><span style="font-family:Verdana;">feedstock sources rather than degrading the environment through deforestation. 展开更多
关键词 BIOENERGY Solid Biofuels Briquette Quality
下载PDF
FABRICATION AND INDUSTRIAL APPLICATION OF FERROMANGANESE COMPOSITE BRIQUETTE
12
作者 Yang Huaming Qiu Guanzhou(Department of Mineral Engineering,Central South University of Technology, Changsha 410083,China) 《Journal of Central South University》 SCIE EI CAS 1998年第1期8-11,共4页
FABRICATIONANDINDUSTRIALAPPLICATIONOFFERROMANGANESECOMPOSITEBRIQUETTE*YangHuamingQiuGuanzhou(DepartmentofMin... FABRICATIONANDINDUSTRIALAPPLICATIONOFFERROMANGANESECOMPOSITEBRIQUETTE*YangHuamingQiuGuanzhou(DepartmentofMineralEngineering,C... 展开更多
关键词 COMPOSITE BRIQUETTE FERROMANGANESE ARC FURNACE
下载PDF
Mobile power generation system based on biomass gasifcation
13
作者 Lu Ding Mingming Yang +5 位作者 Kai Dong Dai‑Viet N.Vo Douglas Hungwe Jiahan Ye Alexander Ryzhkov Kunio Yoshikawa 《International Journal of Coal Science & Technology》 EI CAS CSCD 2022年第3期171-184,共14页
Disaster-hit and/or un-electrifed remote areas usually have electricity accessibility issues and an abundance of plant-derived debris and wood from destroyed wooden structures;this can be potentially addressed by empl... Disaster-hit and/or un-electrifed remote areas usually have electricity accessibility issues and an abundance of plant-derived debris and wood from destroyed wooden structures;this can be potentially addressed by employing a decentralized ultrasmall biomass-fed gasifcation power generating system.This paper presents an assessment of the technical viability of an ultra-small gasifcation system that utilizes densifed carbonized wood pellets/briquettes.The setup was run continuously for 100 h.A variety of biomass was densifed and carbonized by harnessing fugitive heat sources before charging into the reactor.Carbonized briquettes and furnished blends exhibited inferior gasifcation performance compared to the carbonized pellets.In the absence of tar blockage problems,steady-state conditions were achieved when pre-treated feedstock was used.Under steady-state conditions for carbonized pellets gasifcation operated at an equivalence ratio of 0.32,cold gas efciency and carbon conversion achieved 49.2%and 70.5%,respectively.Overall efciency and maximum power output of 20.3%and 21 kW were realised,respectively.It was found that the system could keep stable while the low heating valve of syngas was over 4 MJ/m^(3)on condition that avoiding tar blocking issues.The results indicate that the proposed compact ultra-small power generation system is a technically feasible approach to remedy power shortage challenge.In addition,process simulation considering carbonized wood gasifcation combined power generation was formulated to produce syngas and electricity.Woody pellets with the fow rate of 20 kg/h could generate a 15.18 kW power at the air fow rate of 40 Nm^(3)/h,which is in a good agreement with 15 kW in the 100 h operation.It is indicated that the gasifcation combined power generation cycle simulated by Aspen simulator could achieve reliable data to assist the complicated experiment operation. 展开更多
关键词 Small-scale power generation Densifcation Carbonized pellet Carbonized briquette Gasifcation
下载PDF
Characterization of bio-coal briquettes blended from low quality coal and biomass waste treated by Garant■bio-activator and its application for fuel combustion
14
作者 Anggoro Tri Mursito Widodo Danang Nor Arifin 《International Journal of Coal Science & Technology》 EI CAS 2020年第4期796-806,共11页
Experimental research was carried out on the manufacturing of bio-coal briquettes from a blend of two different types of low-quality coal and biomass waste in the absence of coal carbonization,where the third blend of... Experimental research was carried out on the manufacturing of bio-coal briquettes from a blend of two different types of low-quality coal and biomass waste in the absence of coal carbonization,where the third blend of the material was fermented by adding a bio-activator solution before pressurizing the components into briquettes.The coal samples from Caringin-Garut Regency(BB-Garut)had a low calorific value and a high sulfur content(6.57 wt%),whereas the coal samples from Bayah-Lebak Regency(BB-Bayah)had a higher calorific value and a lower sulfur content(0.51 wt%).The biomass added to the coal blend is in the form of fermented cow dung(Bio-Kohe),and it had a calorific value of 4192 kcal/kg and a total sulfur content of 1.56 wt%.The main objective of this study is to determine the total decrease in the sulfur content in a blend of coal and biomass in which a fennentation process was carried out using a bio-activator for 24 h.The used bio-activator was made from Garant■(1:40)+molasses 1 wt%/vol,and its used amount was 0.2 L/kg.Also,the total sulfur content in the blend was 1.00 wt%-1.14 wt%,which fulfills the necessary quality requirements for non-carbonized bio-coal briquettes.The pyritic and sulfate content in the raw coal was dominant,and the organic sulfur,when fermented with Garant■,was found to be less in the produced bio-coal briquettes by 38%-58%. 展开更多
关键词 Coal blending Biomass waste FERMENTATION Briquettes material Combustion properties
下载PDF
Mechanism of sulfur capture during coal briquette combustion
15
作者 Lu Xin, Lin Guo zhen, Zhuang Ya hui Research Center for Eco Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 1998年第4期69-74,共6页
The mechanisms of sulfur capturing during coal briquette combustion was discussed. Various factors affecting sulfur removal efficiency have been studied. Characterization of the slag left after combustion has been ca... The mechanisms of sulfur capturing during coal briquette combustion was discussed. Various factors affecting sulfur removal efficiency have been studied. Characterization of the slag left after combustion has been carried out by using X ray diffraction (XRD), Messbauer spectroscopy (MS), scanning electron microscopy (SEM), energy dispersion X ray analysis (EDAX), and electron spectroscopy for chemical analysis (ESCA). No other sulfur containing species besides CaSO 4 was found. Small amount of CaFe 3(SiO 4) 2OH, some complexes of CaO SiO 2 Fe 2O 3 and vitreous iron oxides were identified on the surface of CaSO 4 grains. This might explain the mechanism of sulfur fixation during coal briquettes combustion. 展开更多
关键词 coal briquette sulfur capture high temperature combustion.
下载PDF
Application of carbon composite iron ore hot briquette to innovative ironmaking process
16
作者 CHU Mansheng Institute of Ferrous Metallurgy,Northeastern University,Shenyang 110004,Liaoning,China 《Baosteel Technical Research》 CAS 2010年第S1期2-,共1页
As a new type of ironmaking raw materials,carbon composite iron ore hot briquette(CCB) is the product of fine iron ore and fine coal by hot briquetting process.On basis of experimental research on the manufacturing an... As a new type of ironmaking raw materials,carbon composite iron ore hot briquette(CCB) is the product of fine iron ore and fine coal by hot briquetting process.On basis of experimental research on the manufacturing and metallurgical properties of CCB,this study focused on the application of CCB to blast furnace ironmaking and newly-developed shaft furnace smelting reduction processes.Firstly,the metallurgical properties of CCB are experimentally tested and compared with the common iron-bearing burdens.Then,the effects of charging CCB on blast furnace operation are numerically analyzed by means of multi-fluid blast furnace model,and the flowchart and pilot test of CCB-Shaft furnace smelting reduction process are briefly introduced. 展开更多
关键词 carbon composite iron ore hot briquette IRONMAKING blast furnace smelt reduction process
下载PDF
Fe-Si promoter for sulfur capture during coal briquette combustion
17
《Journal of Environmental Sciences》 SCIE EI CAS CSCD 1997年第4期114-118,共5页
FeSipromoterforsulfurcaptureduringcoalbriquetecombustionLuXin,LinGuozhen,XiaoPeilin,ZhuangYahuiResearchCente... FeSipromoterforsulfurcaptureduringcoalbriquetecombustionLuXin,LinGuozhen,XiaoPeilin,ZhuangYahuiResearchCenterforEcoEnvironm... 展开更多
关键词 Fe-Si promoter for sulfur capture during coal briquette combustion Si
下载PDF
Potential Utilization of Sawdust in Energy, Manufacturing and Agricultural Industry;Waste to Wealth
18
作者 O. L. Rominiyi B. A. Adaramola +2 位作者 O. M. Ikumapayi O. T. Oginni S. A. Akinola 《World Journal of Engineering and Technology》 2017年第3期526-539,共14页
Sawdust which is basically considered as?a timber-industrial waste?that pollutes the environment can become a valuable commodity which is considered in three ways: Manufacturing, Energy and Agricultural utilization. T... Sawdust which is basically considered as?a timber-industrial waste?that pollutes the environment can become a valuable commodity which is considered in three ways: Manufacturing, Energy and Agricultural utilization. The sawdust is burnt in an updraft gasifier under a limited supply of air to obtain?producer gas which is carbon II oxide and hydrogen as main components. The sawdust and other biomass materials are mixed in certain proportions, then bound together and palletized to a small blocks called briquettes. The material?was also considered to be composted by mixing it with animal digestion or?wood ashes and calcium carbonate to form fertilizers. The sawdust and wood shavings can be used for particle board as well as oil production. 展开更多
关键词 SAWDUST Industrial WASTE PRODUCER Gas Biomass BRIQUETTE UTILIZATION
下载PDF
Preparation of Charcoal Using Flower Waste
19
作者 Wondwossen Bogale 《Journal of Power and Energy Engineering》 2017年第2期1-10,共10页
Ethiopia is the second largest flower exporter in Africa. However, finding effective solutions for flowers waste management that are economical, efficient and environmentally friendly is a very difficult task. In this... Ethiopia is the second largest flower exporter in Africa. However, finding effective solutions for flowers waste management that are economical, efficient and environmentally friendly is a very difficult task. In this paper, a novel technology to recover energy from flower waste with the objective of producing biochar from flower waste by using pyrolysis has been presented. The pyrolysis reactor has been designed, manufactured and tested. Characterization of the flower waste has also been done by estimating the ultimate and proximate analysis. Besides the energy content has been measured by using Bomb calorimeter. Detailed proximate analysis has been performed and the energy content of the biochar has also been measured. The result shows that 10 kg of biochar is produced by using 18 kg of flower waste with a conversion efficiency of 55.5% and approximately 310.8 kg of biochar can be generated daily. Based on the result, the measured value of lower heating value of the produced biochar is 26.54 MJ/kg and approximately 392.2 kg of firewood is replaced daily. Thus, by adopting this innovative technology and producing biochar, the amount of flower waste is reduced from going to the landfill, energy is recovered from flower waste, income is generated from the selling of the produced biochar and the energy problems of the society is solved and finally environmental impact of the flower waste is reduced. 展开更多
关键词 BIOCHAR BRIQUETTE FLOWER WASTE PYROLYSIS
下载PDF
Energy Efficiency of Briquettes Derived from Three Agricultural Waste’s Charcoal Using Two Organic Binders
20
作者 Pali Kpelou Damgou Mani Kongnine +2 位作者 Saboillié Kombate Essowè Mouzou Kossi Napo 《Journal of Sustainable Bioenergy Systems》 2019年第2期79-89,共11页
Waste management could contribute significantly to reducing environmental degradation. Studies showed that briquetting provides with or without binder helps to manage wastes as energy fuels. However, the properties of... Waste management could contribute significantly to reducing environmental degradation. Studies showed that briquetting provides with or without binder helps to manage wastes as energy fuels. However, the properties of many binders are not investigated extensively. This work investigated the effect of two organic binders’ low rate on energy efficiency of Briquettes produced from charcoals of Tender Coconut Husks (TCH), Palm Kernel Shells (PKS) and Corn Cobs (CC). Bombax Costatum calyx (B) and Cissus Repens barks (C) were used separately as binders to elaborate briquettes. The briquettes were compared based on their energy efficiency parameters with wood charcoal as control. Energy efficiency parameters such as water boiling time (WBT), mass of biomass used (MB), burning rate (BR), temperature rise rate (TR) and maximum temperature in the furnace (Tmax) were measured from each biomass charcoal briquette and wood charcoal combustion. Water boiling test was applied to determine briquettes thermal properties. The results of WBT, BR, TR and Tmax were respectively within the ranges 3.4 - 12.3 min, 2.90 - 7.71 g/min, 4.63°C/s - 16.10°C/s and 623°C - 900°C. Corn Cobs charcoal briquettes with Bombax binder took the shortest time to boil water and also presented a high temperature rise rate and the highest maximum temperature. The lowest burning rates were obtained for Tender coconut husks charcoal briquettes with Cissus binder. They showed good material conservation for bombax bound briquettes. The results of our investigations showed that binders content increasing enhanced the thermomechanical stability and affected negatively the energy efficiency parameters of the studied briquettes. 展开更多
关键词 BIOMASS Charcoal BRIQUETTE BINDER Energy EFFICIENCY
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部