The Jiangshan-Shaoxing tectonic zone was the northeastern boundary between the Yangtze Block and the Cathaysia Block during the Neoproterozoic and was an intracontinental orogenic belt during late of the early Paleozo...The Jiangshan-Shaoxing tectonic zone was the northeastern boundary between the Yangtze Block and the Cathaysia Block during the Neoproterozoic and was an intracontinental orogenic belt during late of the early Paleozoic. In this tectonic zone, there develops a lot of mylonite underwent strong ductile deformation and schist, gneiss, and amphibolite with medium and high grade metamorphism which was formed during the late of early Paleozoic. The research of geometry and kinematic of ductile deformation in Jiangshan-Shaoxing tectonic zone is very important to reveal the tectonic process of intracontinental orogeny. This paper uses the anisotropy of magnetic susceptibility (AMS) to determine the ductile deformation geometry and kinematic of Jiangshan-Shaoxing tectonic zone combing with the field survey. In this study, 190 specimens of 19 locations and 221 specimens of 23 locations from Wangjiazhai section and Lipu-Sizhai section were analyzed. The magnetic foliation over magnetic lineation in both Wangjiazhai and Lipu-Sizhai sections together with the field observations indicated a compressional deformation pattern. 3 and 4 strong ductile deformation zones can be established in the Wangjiazhai section and the Lipu-Sizhai section, respectively. According to the magnetic fabric and petro-fabric studies, the Northeastern Jiangshan-Shaoxing tectonic zone suffered two kinds of deformation patterns during the late early Paleozoic, i.e., the thrusting deformation followed by sinistral shear deformation.展开更多
A theoretical model that takes into account the flee-volume aided cooperative shearing of shear transformation zones (STZs) is developed to quantitatively understand the ductile-to-brittle transition (DBT) of meta...A theoretical model that takes into account the flee-volume aided cooperative shearing of shear transformation zones (STZs) is developed to quantitatively understand the ductile-to-brittle transition (DBT) of metallic glasses. The STZ dilatational strain is defined as the ratio of STZ-activated free volume to STZ volume itself. The model demonstrates that the STZ dilatational strain will increase drastically and exceed the characteristic shear strain of STZ as temperature decreases below a critical value. This critical temperature is in good agreement with the experimentally measured DBT temperature. Our results suggest that the DBT of metallic glasses is underpinned by the transition of atomic-cluster motions from STZ-tvpe rearrangements to dilatational processes (termed tension transformation zones (TrZs)).展开更多
Based on the crack tip structure a new model of ductile -brittle transition was proposed. Using this new model we calculated the dependence of the transition temperature-strain rate over a wide range of strain rate. F...Based on the crack tip structure a new model of ductile -brittle transition was proposed. Using this new model we calculated the dependence of the transition temperature-strain rate over a wide range of strain rate. Finally the significance of this new model is discussed in detail.展开更多
The work is a vivid description of the structural relationship between brittle deformation of the Precambrian basement in the southern continental part of the Cameroon Line and intrusive Paleozoic and Mesozoic basalt ...The work is a vivid description of the structural relationship between brittle deformation of the Precambrian basement in the southern continental part of the Cameroon Line and intrusive Paleozoic and Mesozoic basalt dykes swarms. A multidisciplinary approach that involves a combination of remote sensing techniques and field studies show that the major trend of brittle structures correspond to well-known regional structures: N70°E (Adamawa Shear Zone), N135°E (upper Benue trend) and N30°E (Cameroon Volcanic Line) corresponding to E-W and N-S directions respectively. Basalt dykes are associated to NE-SW, E-W and NW-SE oriented fractures. An integration of the available information on brittle structures and basalt dykes directions suggest an emplacement of the Mesozoic and Paleozoic basalt dykes structurally controlled by Precambrian structures that were originated through Riedel’s fracture kinematic model with dextral strike-slip Adamawa Shear Zone as the main shear zone during late stage of the Pan-African collision. Spatially, the restriction of the basalt dykes to the corridor of the Adamawa Shear Zone indicate that a rejuvenation of Precambrian faults may very well be the origin of the dykes with possibility that they may have been reworked several times during the Phanerozoic eon.展开更多
The ductile shearing zones of coal seams in a brittle deformation domain in super-ficial lithosphere are put forward based on the study on bedding shearing and ductile rheology of coal seams. The macrocosmic and micro...The ductile shearing zones of coal seams in a brittle deformation domain in super-ficial lithosphere are put forward based on the study on bedding shearing and ductile rheology of coal seams. The macrocosmic and microcosmic characteristics include wrinkle fold, mymonitized zones and ductile planar structure of coal seams, etc., while the microcosmic characteristics may also include different optic-axis fabrics and the anisotropy of vitrinite reflectance as well as the change of chemical structure and organic geochemistry components. The forming mechanism is analyzed and the strain environment of ductile shearing zones of coal seams discussed. The result indicates that, in the superficial brittle deformation domain, the coal seams are easy to be deformed, resulting in not only brittle deformation but also ductile shearing deformation under the action of force. Because of simple shearing stress, the interlayer gliding or ductile rheology may take place between coal seams and wall rocks. Therefore, many ductile shearing zones come into being in superficial lithosphere (<5 km). The research on ductile shearing zone of brittle de-formation domain in superficial lithosphere is significant not only theoretically for the study of ductile shearing and ductile rheology of the lithosphere but also practically for the structural movement of coal seams, the formation and accumulation of coal-bed methane, and the preven-tion and harness of gas burst in coal mine.展开更多
By means of Gleeble-1500 testing machine, the simulation of continuous casting process forAH32 steel was carried out and hot ductility and strength were determined. The cracking sensitivity was studied under the diffe...By means of Gleeble-1500 testing machine, the simulation of continuous casting process forAH32 steel was carried out and hot ductility and strength were determined. The cracking sensitivity was studied under the different temperatures and strain rates. The Precipitations of AIN at different temperatures and the fractures of high-temperature tensile samples were observed by using TEM (transmission electron microscope) and SEM (scanning electron microscope). The factors affecting the brittle temperature zone were discussed.展开更多
Microstructure and mechanical properties of the heat affected zone(HAZ)in multi-pass gas metal arc(GMA)welded Al Zn Mg Cu alloy plates were investigated,based upon which the mechanical anisotropy and fracture mechanis...Microstructure and mechanical properties of the heat affected zone(HAZ)in multi-pass gas metal arc(GMA)welded Al Zn Mg Cu alloy plates were investigated,based upon which the mechanical anisotropy and fracture mechanism were analyzed.The microstructure and composition were analyzed by scanning electron microscope(SEM)and energy dispersive spectroscope(EDS).X-ray diffractometer(XRD),transmission electron microscope(TEM)and selective area electron diffraction(SAED)were used to analyze the phase composition.The distribution of microhardness was identified as gradual transition and tensile strength had a tendency to decrease first and then increase.The distribution of nano-sizedη(MgZn2)particles in theα(Al)matrix and Al2MgCu phase determined the tensile performances along the thickness direction and led to the formation of ductile/brittle composite fracture in the HAZ.The continuous distribution of Al2MgCu phase in the strip intergranular precipitates gave birth to premature cracks and the brittle fracture region.The precipitated particles coarsening also led to the deterioration of mechanical properties.展开更多
Damage zones of brittle-ductile (B-D) transition in PP/EPDM blends are studied in this paper. The contribution of crazing and shear yielding zones in damage zones to energy dissipation of blends was measured with comp...Damage zones of brittle-ductile (B-D) transition in PP/EPDM blends are studied in this paper. The contribution of crazing and shear yielding zones in damage zones to energy dissipation of blends was measured with computer image analysis (CIA) and the transition of shear yielding zone (A_(sh)) with rubber volume fraction (V_f) was also manipulated. Results showed that the B-D transition of impact strength of blends corresponded to the fracture mechanism in PP/EPDM blends, from matrix crazing to matrix shear yielding. In addition, two new parameters, density of energy dissipation for crazing zone (F_(cz)) and for shear yielding zone (F_(sh)), are first obtained in this paper. The value of F_(sh) is about four times larger than that of F_(cz) for PP/EPDM blends, which confirmed that the matrix shear yielding is a more effective way of energy dissipation in blends.展开更多
The combination of field surveys with analysis of microstructure of tectonite and Electron Backscatter Diffraction(EBSD) on quartz fabric indicated that three periods of ductile shear events developed in the Paishanlo...The combination of field surveys with analysis of microstructure of tectonite and Electron Backscatter Diffraction(EBSD) on quartz fabric indicated that three periods of ductile shear events developed in the Paishanlou gold deposits and the E-W and NE-striking ductile shear zones were formed during each event.The E-W-striking ductile shear zone,accompanied by compressional and dextral shear slip,was shear-cut by the NE-striking shear zones,accompanied by compressional-sinistral shear slip and sinistral-normal shear slip,successively.An E-W-striking ductile shear zone developed at a deeper tectonic level and at middle- to high-temperatures,accompanied by abundant microstructures,including microlayering between a polycrystal quartz belt and mica,and quartz deformation was depended on cylinder(10-10) or <c> glide.The development of an E-W-striking shear zone can be seen as a tectonic pattern in the region of the Paishanlou gold deposits of the collision between the Mongolian tectonic belt and the North Archean Craton from Suolun to the Linxi suture zone during the Indosinian.The NE-striking ductile shear zone developed approximately 160 Ma during the early Yianshanian at middle to shallow tectonic levels and at middle- to low-temperatures,accompanied by typical microstructures,including polycrystal quartz aggregation and quartz subgrain rotation recrystallization,etc.,and quartz deformation was depended on prismatic(1011) glide.The last ductile shear event around the NE-striking shear zone developed at low temperatures and shallow tectonic levels,yielding to a pre-existing NE-striking shear zone,accompanied by abundant microstructures,including low-temperature quartz grain boundary migration and bulging recrystallization.The last ductile shear movement may be related to lithosphere thinning and the destruction of the North China Craton from approximately 130-120 Ma,and this shear event resulted directly in the mineralization in the Paishanlou region.展开更多
基金supported by the project of geological survey and evolution of Jiangshan-Shaoxing tectonic zone from Department of Land and Resources of Zhejiang Province
文摘The Jiangshan-Shaoxing tectonic zone was the northeastern boundary between the Yangtze Block and the Cathaysia Block during the Neoproterozoic and was an intracontinental orogenic belt during late of the early Paleozoic. In this tectonic zone, there develops a lot of mylonite underwent strong ductile deformation and schist, gneiss, and amphibolite with medium and high grade metamorphism which was formed during the late of early Paleozoic. The research of geometry and kinematic of ductile deformation in Jiangshan-Shaoxing tectonic zone is very important to reveal the tectonic process of intracontinental orogeny. This paper uses the anisotropy of magnetic susceptibility (AMS) to determine the ductile deformation geometry and kinematic of Jiangshan-Shaoxing tectonic zone combing with the field survey. In this study, 190 specimens of 19 locations and 221 specimens of 23 locations from Wangjiazhai section and Lipu-Sizhai section were analyzed. The magnetic foliation over magnetic lineation in both Wangjiazhai and Lipu-Sizhai sections together with the field observations indicated a compressional deformation pattern. 3 and 4 strong ductile deformation zones can be established in the Wangjiazhai section and the Lipu-Sizhai section, respectively. According to the magnetic fabric and petro-fabric studies, the Northeastern Jiangshan-Shaoxing tectonic zone suffered two kinds of deformation patterns during the late early Paleozoic, i.e., the thrusting deformation followed by sinistral shear deformation.
基金supported by the National Nature Science Foundation of China (Grant Nos.11522221,11372315,11472287,and 51171138)the National Basic Research Program of China (Grant No.2012CB937500)+1 种基金the CAS/SAFEA International Partnership Program for Creative Research Teamspartially also by DFG
文摘A theoretical model that takes into account the flee-volume aided cooperative shearing of shear transformation zones (STZs) is developed to quantitatively understand the ductile-to-brittle transition (DBT) of metallic glasses. The STZ dilatational strain is defined as the ratio of STZ-activated free volume to STZ volume itself. The model demonstrates that the STZ dilatational strain will increase drastically and exceed the characteristic shear strain of STZ as temperature decreases below a critical value. This critical temperature is in good agreement with the experimentally measured DBT temperature. Our results suggest that the DBT of metallic glasses is underpinned by the transition of atomic-cluster motions from STZ-tvpe rearrangements to dilatational processes (termed tension transformation zones (TrZs)).
文摘Based on the crack tip structure a new model of ductile -brittle transition was proposed. Using this new model we calculated the dependence of the transition temperature-strain rate over a wide range of strain rate. Finally the significance of this new model is discussed in detail.
文摘The work is a vivid description of the structural relationship between brittle deformation of the Precambrian basement in the southern continental part of the Cameroon Line and intrusive Paleozoic and Mesozoic basalt dykes swarms. A multidisciplinary approach that involves a combination of remote sensing techniques and field studies show that the major trend of brittle structures correspond to well-known regional structures: N70°E (Adamawa Shear Zone), N135°E (upper Benue trend) and N30°E (Cameroon Volcanic Line) corresponding to E-W and N-S directions respectively. Basalt dykes are associated to NE-SW, E-W and NW-SE oriented fractures. An integration of the available information on brittle structures and basalt dykes directions suggest an emplacement of the Mesozoic and Paleozoic basalt dykes structurally controlled by Precambrian structures that were originated through Riedel’s fracture kinematic model with dextral strike-slip Adamawa Shear Zone as the main shear zone during late stage of the Pan-African collision. Spatially, the restriction of the basalt dykes to the corridor of the Adamawa Shear Zone indicate that a rejuvenation of Precambrian faults may very well be the origin of the dykes with possibility that they may have been reworked several times during the Phanerozoic eon.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 40172058)the National Key Development Plan Project of Basic Research (973 Plan)(Grant No. 2002CB211704) the Skeleton Teacher of Higher Education.
文摘The ductile shearing zones of coal seams in a brittle deformation domain in super-ficial lithosphere are put forward based on the study on bedding shearing and ductile rheology of coal seams. The macrocosmic and microcosmic characteristics include wrinkle fold, mymonitized zones and ductile planar structure of coal seams, etc., while the microcosmic characteristics may also include different optic-axis fabrics and the anisotropy of vitrinite reflectance as well as the change of chemical structure and organic geochemistry components. The forming mechanism is analyzed and the strain environment of ductile shearing zones of coal seams discussed. The result indicates that, in the superficial brittle deformation domain, the coal seams are easy to be deformed, resulting in not only brittle deformation but also ductile shearing deformation under the action of force. Because of simple shearing stress, the interlayer gliding or ductile rheology may take place between coal seams and wall rocks. Therefore, many ductile shearing zones come into being in superficial lithosphere (<5 km). The research on ductile shearing zone of brittle de-formation domain in superficial lithosphere is significant not only theoretically for the study of ductile shearing and ductile rheology of the lithosphere but also practically for the structural movement of coal seams, the formation and accumulation of coal-bed methane, and the preven-tion and harness of gas burst in coal mine.
文摘By means of Gleeble-1500 testing machine, the simulation of continuous casting process forAH32 steel was carried out and hot ductility and strength were determined. The cracking sensitivity was studied under the different temperatures and strain rates. The Precipitations of AIN at different temperatures and the fractures of high-temperature tensile samples were observed by using TEM (transmission electron microscope) and SEM (scanning electron microscope). The factors affecting the brittle temperature zone were discussed.
基金Project(51905126) supported by the National Natural Science Foundation of ChinaProject(2018M641822) supported by the China Postdoctoral Science Foundation-General ProgramProject(HIT.NSRIF.201703) supported by the Natural Scientific Research Innovation Foundation in HIT,China
文摘Microstructure and mechanical properties of the heat affected zone(HAZ)in multi-pass gas metal arc(GMA)welded Al Zn Mg Cu alloy plates were investigated,based upon which the mechanical anisotropy and fracture mechanism were analyzed.The microstructure and composition were analyzed by scanning electron microscope(SEM)and energy dispersive spectroscope(EDS).X-ray diffractometer(XRD),transmission electron microscope(TEM)and selective area electron diffraction(SAED)were used to analyze the phase composition.The distribution of microhardness was identified as gradual transition and tensile strength had a tendency to decrease first and then increase.The distribution of nano-sizedη(MgZn2)particles in theα(Al)matrix and Al2MgCu phase determined the tensile performances along the thickness direction and led to the formation of ductile/brittle composite fracture in the HAZ.The continuous distribution of Al2MgCu phase in the strip intergranular precipitates gave birth to premature cracks and the brittle fracture region.The precipitated particles coarsening also led to the deterioration of mechanical properties.
基金Project supported by the National Natural Science Foundation of China.
文摘Damage zones of brittle-ductile (B-D) transition in PP/EPDM blends are studied in this paper. The contribution of crazing and shear yielding zones in damage zones to energy dissipation of blends was measured with computer image analysis (CIA) and the transition of shear yielding zone (A_(sh)) with rubber volume fraction (V_f) was also manipulated. Results showed that the B-D transition of impact strength of blends corresponded to the fracture mechanism in PP/EPDM blends, from matrix crazing to matrix shear yielding. In addition, two new parameters, density of energy dissipation for crazing zone (F_(cz)) and for shear yielding zone (F_(sh)), are first obtained in this paper. The value of F_(sh) is about four times larger than that of F_(cz) for PP/EPDM blends, which confirmed that the matrix shear yielding is a more effective way of energy dissipation in blends.
基金supported by National Crisis Mine Program(Grant No.20089931)National Natural Science Foundation of China(Grant Nos.90814006,91214301,41172089)Foundation of Shandong Provincial Key Laboratory of Depositional Mineralization&Sedimentary Minerals(Grant No.DMSM201005)
文摘The combination of field surveys with analysis of microstructure of tectonite and Electron Backscatter Diffraction(EBSD) on quartz fabric indicated that three periods of ductile shear events developed in the Paishanlou gold deposits and the E-W and NE-striking ductile shear zones were formed during each event.The E-W-striking ductile shear zone,accompanied by compressional and dextral shear slip,was shear-cut by the NE-striking shear zones,accompanied by compressional-sinistral shear slip and sinistral-normal shear slip,successively.An E-W-striking ductile shear zone developed at a deeper tectonic level and at middle- to high-temperatures,accompanied by abundant microstructures,including microlayering between a polycrystal quartz belt and mica,and quartz deformation was depended on cylinder(10-10) or <c> glide.The development of an E-W-striking shear zone can be seen as a tectonic pattern in the region of the Paishanlou gold deposits of the collision between the Mongolian tectonic belt and the North Archean Craton from Suolun to the Linxi suture zone during the Indosinian.The NE-striking ductile shear zone developed approximately 160 Ma during the early Yianshanian at middle to shallow tectonic levels and at middle- to low-temperatures,accompanied by typical microstructures,including polycrystal quartz aggregation and quartz subgrain rotation recrystallization,etc.,and quartz deformation was depended on prismatic(1011) glide.The last ductile shear event around the NE-striking shear zone developed at low temperatures and shallow tectonic levels,yielding to a pre-existing NE-striking shear zone,accompanied by abundant microstructures,including low-temperature quartz grain boundary migration and bulging recrystallization.The last ductile shear movement may be related to lithosphere thinning and the destruction of the North China Craton from approximately 130-120 Ma,and this shear event resulted directly in the mineralization in the Paishanlou region.