Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important a...Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important and scarce network resources such as bandwidth and processing power.There have been several reports of these control signaling turning into signaling storms halting network operations and causing the respective Telecom companies big financial losses.This paper draws its motivation from such real network disaster incidents attributed to signaling storms.In this paper,we present a thorough survey of the causes,of the signaling storm problems in 3GPP-based mobile broadband networks and discuss in detail their possible solutions and countermeasures.We provide relevant analytical models to help quantify the effect of the potential causes and benefits of their corresponding solutions.Another important contribution of this paper is the comparison of the possible causes and solutions/countermeasures,concerning their effect on several important network aspects such as architecture,additional signaling,fidelity,etc.,in the form of a table.This paper presents an update and an extension of our earlier conference publication.To our knowledge,no similar survey study exists on the subject.展开更多
The year of 2014 saw the beginning of China's LTE,which marks that China has become one of the major engines for the global LTE development.China dazzled in the construction of LTE networks,subscribers,and industr...The year of 2014 saw the beginning of China's LTE,which marks that China has become one of the major engines for the global LTE development.China dazzled in the construction of LTE networks,subscribers,and industry chain.However,the policy formulated around TD-LTE also put China in predicament and brought it many challenges.With this article,we are going to put China's market for mobile broadband networks into perspective,focusing on the development of China's LTE market,challenges that encountered,and the research in this area in the years to come.Besides,in regards to the problems that already appeared,we will,from policy-making,industry-level,and technological points of view,offer our suggestions on how China should do to make this market robust.展开更多
A new approximation of fair queuing called Compensating Hound Robin (CRR) is presented in this paper. The algorithm uses packet-by-packet scheduler with a compensating measure. It achieves good fairness in terms of th...A new approximation of fair queuing called Compensating Hound Robin (CRR) is presented in this paper. The algorithm uses packet-by-packet scheduler with a compensating measure. It achieves good fairness in terms of throughput, requires only O( I) time complexity to process a packet, and is simple enough to be implemented in hardware. After the performances are analyzed, the fairness and packet loss rate of the algorithm are simulated. Simulation results show that the CRR can effectively isolate the effects of contending .sources.展开更多
Over-the-top services and cloud services have created great challenges for telecom operators. To better meet the requirements of cloud services, we propose a decoupled network architecture. Software-defined networkin...Over-the-top services and cloud services have created great challenges for telecom operators. To better meet the requirements of cloud services, we propose a decoupled network architecture. Software-defined networking/network function virtualization (SDN/ NFV) will be vital in the construction of cloud-oriented broadband infrastructure, especially within data centers and for intercon nection between data centers. We also propose introducing SDN/NFV in the broadband access network in order to realize a virtu- alized residential gateway (VRG). We discuss the deployment modes of VRG.展开更多
16 September 2013, Shenzhen--ZTE today unveiled the world's first flexible, reconfigurable terabit router that allows customers to build the highest-performance broadband networks. The terabit router supports the de...16 September 2013, Shenzhen--ZTE today unveiled the world's first flexible, reconfigurable terabit router that allows customers to build the highest-performance broadband networks. The terabit router supports the deployment of multiple line cards with processing capabilities of 10 Gbps to 1 Tbps. It also supports the deployment of modules that can scale throughput from 200 Gbps to 18 Tbps. For easy installation in a range of environments, the router interfaces are flexible and the component design is loose-coupled. This allows customers to customize networks to their needs and promotes adaptability, consistency, and continuity.展开更多
Carrying out pilot project to provide broadband universal service nationwide, especially in rural impoverished areas, is a major policy decision in China. To accelerate implementation and ensure quality of the constru...Carrying out pilot project to provide broadband universal service nationwide, especially in rural impoverished areas, is a major policy decision in China. To accelerate implementation and ensure quality of the constructed network, it is of great significance to conduct comprehensive and scientific evaluation of the network status. In this paper, we present the evaluation of the broadband network constructed in rural China with several key indicators. It shows that with steppedup efforts of the telecom industry, broadband networks have been introduced into more and more villages. The average network speed reaches 60 Mbps, which is far exceeding 12 Mbps’ obligation.展开更多
Mobile broadband(MBB)networks are expanding rapidly to deliver higher data speeds.The fifth-generation cellular network promises enhanced-MBB with high-speed data rates,low power connectivity,and ultralow latency vide...Mobile broadband(MBB)networks are expanding rapidly to deliver higher data speeds.The fifth-generation cellular network promises enhanced-MBB with high-speed data rates,low power connectivity,and ultralow latency video streaming.However,existing cellular networks are unable to perform well due to high latency and low bandwidth,which degrades the performance of various applications.As a result,monitoring and evaluation of the performance of these network-supported services is critical.Mobile network providers optimize and monitor their network performance to ensure the highest quality of service to their end-users.This paper proposes a Bayesian model to estimate the minimum opinion score(MOS)of video streaming services for any particular cellular network.The MOS is the most commonly used metric to assess the quality of experience.The proposed Bayesian model consists of several input data,namely,round-trip time,stalling load,and bite rates.It was examined and evaluated using several test data sizes with various performance metrics.Simulation results show the proposed Bayesian network achieved higher accuracy overall test data sizes than a neural network.The proposed Bayesian network obtained a remarkable overall accuracy of 90.36%and outperformed the neural network.展开更多
Broadband provides high speed data transmission to Internet and 4G networks were developed to transform broadband technology with higher data rate and enhanced quality of service. The performance of broadband network ...Broadband provides high speed data transmission to Internet and 4G networks were developed to transform broadband technology with higher data rate and enhanced quality of service. The performance of broadband network in Nigeria in terms of type, purpose and speed was evaluated in this work. Some quarters at Ilesa and Oba-Ile in Akure were chosen as rural areas, while Abuja and Lagos represented the urban areas of the study. Questionnaires were administered among users in these areas randomly. Thereafter, data were analyzed and research questions answered from the analyzed results. The results showed that the majority of the respondents operated on wireless broadband technologies. The download speed is generally above 100 mbps in urban areas and below in rural areas, with MTN having the highest number of subscribers. In addition, most of the Internet surfers download files. With these characteristics, it was discovered that the network operators were deploying 3G systems as broadband instead of 4G systems.展开更多
Broadband electromagnetic(EM)wave absorption materials play an important role in military stealth and health protection.Herein,metal–organic frameworks(MOFs)-derived magnetic-carbon CoNiM@C(M=Cu,Zn,Fe,Mn)microspheres...Broadband electromagnetic(EM)wave absorption materials play an important role in military stealth and health protection.Herein,metal–organic frameworks(MOFs)-derived magnetic-carbon CoNiM@C(M=Cu,Zn,Fe,Mn)microspheres are fabricated,which exhibit flower-like nano–microstructure with tunable EM response capacity.Based on the MOFs-derived CoNi@C microsphere,the adjacent third element is introduced into magnetic CoNi alloy to enhance EM wave absorption performance.In term of broadband absorption,the order of efficient absorption bandwidth(EAB)value is Mn>Fe=Zn>Cu in the CoNiM@C microspheres.Therefore,MOFs-derived flower-like CoNiMn@C microspheres hold outstanding broadband absorption and the EAB can reach up to 5.8 GHz(covering 12.2–18 GHz at 2.0 mm thickness).Besides,off-axis electron holography and computational simulations are applied to elucidate the inherent dielectric dissipation and magnetic loss.Rich heterointerfaces in CoNiMn@C promote the aggregation of the negative/positive charges at the contacting region,forming interfacial polarization.The graphitized carbon layer catalyzed by the magnetic CoNiMn core offered the electron mobility path,boosting the conductive loss.Equally importantly,magnetic coupling is observed in the CoNiMn@C to strengthen the magnetic responding behaviors.This study provides a new guide to build broadband EM absorption by regulating the ternary magnetic alloy.展开更多
Atomic-scale doping strategies and structure design play pivotal roles in tailoring the electronic structure and physicochemical property of electromagnetic wave absorption(EMWA)materials.However,the relationship betw...Atomic-scale doping strategies and structure design play pivotal roles in tailoring the electronic structure and physicochemical property of electromagnetic wave absorption(EMWA)materials.However,the relationship between configuration and electromagnetic(EM)loss mechanism has remained elusive.Herein,drawing inspiration from the DNA transcription process,we report the successful synthesis of novel in situ Mn/N co-doped helical carbon nanotubes with ultrabroad EMWA capability.Theoretical calculation and EM simulation confirm that the orbital coupling and spin polarization of the Mn–N4–C configuration,along with cross polarization generated by the helical structure,endow the helical converters with enhanced EM loss.As a result,HMC-8 demonstrates outstanding EMWA performance,achieving a minimum reflection loss of−63.13 dB at an ultralow thickness of 1.29 mm.Through precise tuning of the graphite domain size,HMC-7 achieves an effective absorption bandwidth(EAB)of 6.08 GHz at 2.02 mm thickness.Furthermore,constructing macroscale gradient metamaterials enables an ultrabroadband EAB of 12.16 GHz at a thickness of only 5.00 mm,with the maximum radar cross section reduction value reaching 36.4 dB m2.This innovative approach not only advances the understanding of metal–nonmetal co-doping but also realizes broadband EMWA,thus contributing to the development of EMWA mechanisms and applications.展开更多
CoFe_(2)O_(4)has been widely used for electromagnetic wave absorption owing to its high Snoek limit,high anisotropy,and suitable saturation magnetization;however,its inherent shortcomings,including low dielectric loss...CoFe_(2)O_(4)has been widely used for electromagnetic wave absorption owing to its high Snoek limit,high anisotropy,and suitable saturation magnetization;however,its inherent shortcomings,including low dielectric loss,high density,and magnetic agglomeration,limit its application as an ideal absorbent.This study investigated a microstructure regulation strategy to mitigate the inherent disadvantages of pristine CoFe_(2)O_(4)synthesized via a sol–gel auto-combustion method.A series of CoFe_(2)O_(4)foams(S0.5,S1.0,and S1.5,corresponding to foams with citric acid(CA)-to-Fe(NO_(3))_(3)·9H_(2)O molar ratios of 0.5,1.0,and 1.5,respectively)with two-dimensional(2D)curved surfaces were obtained through the adjustment of CA-to-Fe^(3+)ratio,and the electromagnetic parameters were adjusted through morphology regulation.Owing to the appropriate impedance matching and conductance loss provided by moderate complex permittivity,the effective absorption bandwidth(EAB)of S0.5 was as high as 7.3 GHz,exceeding those of most CoFe_(2)O_(4)-based absorbents.Moreover,the EAB of S1.5 reached 5.0 GHz(8.9–13.9 GHz),covering most of the X band,owing to the intense polarization provided by lattice defects and the heterogeneous interface.The three-dimensional(3D)foam structure circumvented the high density and magnetic agglomeration issues of CoFe_(2)O_(4)nanoparticles,and the good conductivity of 2D curved surfaces could effectively elevate the complex permittivity to ameliorate the dielectric loss of pure CoFe_(2)O_(4).This study provides a novel idea for the theoretical design and practical production of lightweight and broadband pure ferrites.展开更多
The demand of high-end electromagnetic wave absorbing materials puts forward higher requirements on comprehensive performances of small thickness,lightweight,broadband,and strong absorption.Herein,a novel multi-layer ...The demand of high-end electromagnetic wave absorbing materials puts forward higher requirements on comprehensive performances of small thickness,lightweight,broadband,and strong absorption.Herein,a novel multi-layer stepped metamaterial absorber with gradient electromagnetic properties is proposed.The complex permittivity and permeability of each layer are tailored via the proportion of carbonyliron and carbon-fiber dispersing into the epoxy resin.The proposed metamaterial is further optimized via adjusting the electromagnetic parameters and geometric sizes of each layer.Comparing with the four-layer composite with gradient electromagnetic properties which could only realize reflection loss(RL)of less than−6 dB in 2.0-40 GHz,the optimized stepped metamaterial with the same thickness and electromagnetic properties realizes less than−10 dB in the relevant frequency range.Additionally,the RL of less than−15 dB is achieved in the frequency range of 11.2-21.4 GHz and 28.5-40 GHz.The multiple electromagnetic wave absorption mechanism is discussed based on the experimental and simulation results,which is believed to be attributed to the synergy effect induced by multi-scale structures of the metamaterial.Therefore,combining multi-layer structures and periodic stepped structures into a novel gradient absorbing metamaterial would give new insights into designing microwave absorption devices for broadband electromagnetic protections.展开更多
In this paper, a novel magnetoelectric(ME) composite structure is proposed, and the ME response in the structure is measured at the bias magnetic field up to 2000 Oe(1 Oe = 79.5775 A·m^(-1)) and the excitat...In this paper, a novel magnetoelectric(ME) composite structure is proposed, and the ME response in the structure is measured at the bias magnetic field up to 2000 Oe(1 Oe = 79.5775 A·m^(-1)) and the excitation frequency of alternating magnetic field ranging from 1 kHz to 200 kHz. The ME voltage of each PZT layer is detected. According to the measurement results, the phase differences are observed among three channels and the multi-peak phenomenon appears in each channel. Meanwhile, the results show that the ME structure can stay a relatively high ME response within a wide bandwidth.Besides, the hysteretic loops of three PZT layers are observed. When the frequency of alternating current(AC) magnetic field changes, the maximum value of ME coefficient appears in different layers due to the multiple vibration modes of the structure. Moreover, a finite element analysis is performed to evaluate the resonant frequency of the structure, and the theoretical calculating results accord well with the experimental results. The experiment results suggest that the proposed structure may be a good candidate for designing broadband magnetic field sensors.展开更多
Benefiting from the abrupt phase changes within subwavelength thicknesses,metasurfaces have been widely applied for lightweight and compact optical systems.Simultaneous broadband and high-efficiency characteristics ar...Benefiting from the abrupt phase changes within subwavelength thicknesses,metasurfaces have been widely applied for lightweight and compact optical systems.Simultaneous broadband and high-efficiency characteristics are highly attractive for the practical implementation of metasurfaces.However,current metasurface devices mostly adopt discrete micro/nano structures,which rarely realize both merits simultaneously.In this paper,dielectric metasurfaces composed of quasi-continuous nanostrips are proposed to overcome this limitation.Via quasi-continuous nanostrips metasurface,a normal focusing metalens and a superoscillatory lens overcoming the diffraction limit are designed and experimentally demonstrated.The quasi-continuous metadevices can operate in a broadband wavelength ranging from 450 nm to 1000nm and keep a high power efficiency.The average efficiency of the fabricated metalens reaches 54.24%,showing a significant improvement compared to the previously reported metalenses with the same thickness.The proposed methodology can be easily extended to design other metadevices with the advantages of broadband and high-efficiency in practical optical systems.展开更多
The characteristics of net radiation (Rn) (0.3-10 μm) in Lhasa and Haibei in the Tibetan Plateau were analyzed based on long-term in-situ measurements of surface radiation data. The monthly average of daily Rn re...The characteristics of net radiation (Rn) (0.3-10 μm) in Lhasa and Haibei in the Tibetan Plateau were analyzed based on long-term in-situ measurements of surface radiation data. The monthly average of daily Rn reached a minimum during the winter period followed by an increase until May and then a decline until January. This variation is consistent with solar activity. The annual mean daily total Rn values were 0.92 MJ m^-2 d^-1 and 0.66 MJ m-2 d-1 in Lhasa and Haibei, respectively. A relationship between Rn and broadband solar radiation (Rs) was demonstrated by a good linear correlation at the two sites. Rn can be an accurate estimate from Rs. The estimated Rn values were similar to the observed values, and the relative deviations between the estimates and measurements of Rn were 2.8% and 3.8% in Lhasa and Haibei, respectively. The application of the Rn estimating model to other locations showed that it could provide acceptable estimated Rn values from the Rs data. Furthermore, we analyzed the influence of clouds on Rn by different clear index (Ks), defined as the ratio of Rs to the extraterrestrial solar irradiance on a horizontal surface. The results indicate that more accurate results are associated with increased cloudy conditions. The influence of the albedo was also considered, but its inclusion in the model resulted in only a slight improvement. Because surface albedo is not usually measured, an expression based solely ou global solar radiation could be of more extensive use.展开更多
For electromagnetic wave-absorbing materials,maximizing absorption at a specific frequency has been constantly achieved,but enhancing the absorption properties in the entire band remains a challenge.In this work,a 3D ...For electromagnetic wave-absorbing materials,maximizing absorption at a specific frequency has been constantly achieved,but enhancing the absorption properties in the entire band remains a challenge.In this work,a 3D porous pyrolytic carbon(PyC)foam matrix was synthesized by a template method.Amorphous carbon nanotubes(CNTs)were then in-situ grown on the matrix surface to obtain ultralight CNTs/Py C foam.These in-situ grown amorphous CNTs were distributed uniformly and controlled by the catalytic growth time and can enhance the interface polarization and conduction loss of composites.When the electromagnetic wave enters the internal holes,the electromagnetic energy can be completely attenuated under the combined action of polarization,conductivity loss,and multiple reflections.The ultralight CNTs/Py C foam had a density of 22.0 mg·cm^(-3)and a reflection coefficient lower than-13.3 d B in the whole X-band(8.2-12.4 GHz),which is better than the conventional standard of effective absorption bandwidth(≤-10 dB).The results provide ideas for researching ultralight and strong electromagnetic wave absorbing materials in the X-band.展开更多
This paper, using the frequency bandwidth, where both the gain and the VSWR (Voltage Standing Wave Ratio) of a monopole can satisfy the design requirement, as object function, mainly descr...This paper, using the frequency bandwidth, where both the gain and the VSWR (Voltage Standing Wave Ratio) of a monopole can satisfy the design requirement, as object function, mainly describes the process, in which the load locations, the matching network topology and their component values are optimized by the AGA (Adaptive Genetic Algorithm), to achieve a gain more than -2 dB in horizontal direction and a VSWR less than 3 in bandwidth as wide as possible. Moreover the design results are presented for monopoles with two concentrated loadings. It shows that the AGA is an effective method for designing wideband antennas.展开更多
基金the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support(QU-APC-2024-9/1).
文摘Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important and scarce network resources such as bandwidth and processing power.There have been several reports of these control signaling turning into signaling storms halting network operations and causing the respective Telecom companies big financial losses.This paper draws its motivation from such real network disaster incidents attributed to signaling storms.In this paper,we present a thorough survey of the causes,of the signaling storm problems in 3GPP-based mobile broadband networks and discuss in detail their possible solutions and countermeasures.We provide relevant analytical models to help quantify the effect of the potential causes and benefits of their corresponding solutions.Another important contribution of this paper is the comparison of the possible causes and solutions/countermeasures,concerning their effect on several important network aspects such as architecture,additional signaling,fidelity,etc.,in the form of a table.This paper presents an update and an extension of our earlier conference publication.To our knowledge,no similar survey study exists on the subject.
文摘The year of 2014 saw the beginning of China's LTE,which marks that China has become one of the major engines for the global LTE development.China dazzled in the construction of LTE networks,subscribers,and industry chain.However,the policy formulated around TD-LTE also put China in predicament and brought it many challenges.With this article,we are going to put China's market for mobile broadband networks into perspective,focusing on the development of China's LTE market,challenges that encountered,and the research in this area in the years to come.Besides,in regards to the problems that already appeared,we will,from policy-making,industry-level,and technological points of view,offer our suggestions on how China should do to make this market robust.
文摘A new approximation of fair queuing called Compensating Hound Robin (CRR) is presented in this paper. The algorithm uses packet-by-packet scheduler with a compensating measure. It achieves good fairness in terms of throughput, requires only O( I) time complexity to process a packet, and is simple enough to be implemented in hardware. After the performances are analyzed, the fairness and packet loss rate of the algorithm are simulated. Simulation results show that the CRR can effectively isolate the effects of contending .sources.
文摘Over-the-top services and cloud services have created great challenges for telecom operators. To better meet the requirements of cloud services, we propose a decoupled network architecture. Software-defined networking/network function virtualization (SDN/ NFV) will be vital in the construction of cloud-oriented broadband infrastructure, especially within data centers and for intercon nection between data centers. We also propose introducing SDN/NFV in the broadband access network in order to realize a virtu- alized residential gateway (VRG). We discuss the deployment modes of VRG.
文摘16 September 2013, Shenzhen--ZTE today unveiled the world's first flexible, reconfigurable terabit router that allows customers to build the highest-performance broadband networks. The terabit router supports the deployment of multiple line cards with processing capabilities of 10 Gbps to 1 Tbps. It also supports the deployment of modules that can scale throughput from 200 Gbps to 18 Tbps. For easy installation in a range of environments, the router interfaces are flexible and the component design is loose-coupled. This allows customers to customize networks to their needs and promotes adaptability, consistency, and continuity.
文摘Carrying out pilot project to provide broadband universal service nationwide, especially in rural impoverished areas, is a major policy decision in China. To accelerate implementation and ensure quality of the constructed network, it is of great significance to conduct comprehensive and scientific evaluation of the network status. In this paper, we present the evaluation of the broadband network constructed in rural China with several key indicators. It shows that with steppedup efforts of the telecom industry, broadband networks have been introduced into more and more villages. The average network speed reaches 60 Mbps, which is far exceeding 12 Mbps’ obligation.
基金The research leading to these results has received funding from The Research Council(TRC)of the Sultanate of Oman under the Block Funding Program with Agreement No.TRC/BFP/ASU/01/2019.
文摘Mobile broadband(MBB)networks are expanding rapidly to deliver higher data speeds.The fifth-generation cellular network promises enhanced-MBB with high-speed data rates,low power connectivity,and ultralow latency video streaming.However,existing cellular networks are unable to perform well due to high latency and low bandwidth,which degrades the performance of various applications.As a result,monitoring and evaluation of the performance of these network-supported services is critical.Mobile network providers optimize and monitor their network performance to ensure the highest quality of service to their end-users.This paper proposes a Bayesian model to estimate the minimum opinion score(MOS)of video streaming services for any particular cellular network.The MOS is the most commonly used metric to assess the quality of experience.The proposed Bayesian model consists of several input data,namely,round-trip time,stalling load,and bite rates.It was examined and evaluated using several test data sizes with various performance metrics.Simulation results show the proposed Bayesian network achieved higher accuracy overall test data sizes than a neural network.The proposed Bayesian network obtained a remarkable overall accuracy of 90.36%and outperformed the neural network.
文摘Broadband provides high speed data transmission to Internet and 4G networks were developed to transform broadband technology with higher data rate and enhanced quality of service. The performance of broadband network in Nigeria in terms of type, purpose and speed was evaluated in this work. Some quarters at Ilesa and Oba-Ile in Akure were chosen as rural areas, while Abuja and Lagos represented the urban areas of the study. Questionnaires were administered among users in these areas randomly. Thereafter, data were analyzed and research questions answered from the analyzed results. The results showed that the majority of the respondents operated on wireless broadband technologies. The download speed is generally above 100 mbps in urban areas and below in rural areas, with MTN having the highest number of subscribers. In addition, most of the Internet surfers download files. With these characteristics, it was discovered that the network operators were deploying 3G systems as broadband instead of 4G systems.
基金supported by the National Natural Science Foundation of China(52231007,12327804,T2321003,22088101)this work was supported in part by the National Key Research Program of China under Grant 2021YFA1200600,and Shanghai Sailing Program(22YF1447800).
文摘Broadband electromagnetic(EM)wave absorption materials play an important role in military stealth and health protection.Herein,metal–organic frameworks(MOFs)-derived magnetic-carbon CoNiM@C(M=Cu,Zn,Fe,Mn)microspheres are fabricated,which exhibit flower-like nano–microstructure with tunable EM response capacity.Based on the MOFs-derived CoNi@C microsphere,the adjacent third element is introduced into magnetic CoNi alloy to enhance EM wave absorption performance.In term of broadband absorption,the order of efficient absorption bandwidth(EAB)value is Mn>Fe=Zn>Cu in the CoNiM@C microspheres.Therefore,MOFs-derived flower-like CoNiMn@C microspheres hold outstanding broadband absorption and the EAB can reach up to 5.8 GHz(covering 12.2–18 GHz at 2.0 mm thickness).Besides,off-axis electron holography and computational simulations are applied to elucidate the inherent dielectric dissipation and magnetic loss.Rich heterointerfaces in CoNiMn@C promote the aggregation of the negative/positive charges at the contacting region,forming interfacial polarization.The graphitized carbon layer catalyzed by the magnetic CoNiMn core offered the electron mobility path,boosting the conductive loss.Equally importantly,magnetic coupling is observed in the CoNiMn@C to strengthen the magnetic responding behaviors.This study provides a new guide to build broadband EM absorption by regulating the ternary magnetic alloy.
基金supported by the National Natural Science Foundation of China(22265021)the Aeronautical Science Foundation of China(2020Z056056003)Jiangxi Provincial Natural Science Foundation(20232BAB212004).
文摘Atomic-scale doping strategies and structure design play pivotal roles in tailoring the electronic structure and physicochemical property of electromagnetic wave absorption(EMWA)materials.However,the relationship between configuration and electromagnetic(EM)loss mechanism has remained elusive.Herein,drawing inspiration from the DNA transcription process,we report the successful synthesis of novel in situ Mn/N co-doped helical carbon nanotubes with ultrabroad EMWA capability.Theoretical calculation and EM simulation confirm that the orbital coupling and spin polarization of the Mn–N4–C configuration,along with cross polarization generated by the helical structure,endow the helical converters with enhanced EM loss.As a result,HMC-8 demonstrates outstanding EMWA performance,achieving a minimum reflection loss of−63.13 dB at an ultralow thickness of 1.29 mm.Through precise tuning of the graphite domain size,HMC-7 achieves an effective absorption bandwidth(EAB)of 6.08 GHz at 2.02 mm thickness.Furthermore,constructing macroscale gradient metamaterials enables an ultrabroadband EAB of 12.16 GHz at a thickness of only 5.00 mm,with the maximum radar cross section reduction value reaching 36.4 dB m2.This innovative approach not only advances the understanding of metal–nonmetal co-doping but also realizes broadband EMWA,thus contributing to the development of EMWA mechanisms and applications.
基金supported by the National Natural Science Foundation of China (Nos.22004106 and 51872238)。
文摘CoFe_(2)O_(4)has been widely used for electromagnetic wave absorption owing to its high Snoek limit,high anisotropy,and suitable saturation magnetization;however,its inherent shortcomings,including low dielectric loss,high density,and magnetic agglomeration,limit its application as an ideal absorbent.This study investigated a microstructure regulation strategy to mitigate the inherent disadvantages of pristine CoFe_(2)O_(4)synthesized via a sol–gel auto-combustion method.A series of CoFe_(2)O_(4)foams(S0.5,S1.0,and S1.5,corresponding to foams with citric acid(CA)-to-Fe(NO_(3))_(3)·9H_(2)O molar ratios of 0.5,1.0,and 1.5,respectively)with two-dimensional(2D)curved surfaces were obtained through the adjustment of CA-to-Fe^(3+)ratio,and the electromagnetic parameters were adjusted through morphology regulation.Owing to the appropriate impedance matching and conductance loss provided by moderate complex permittivity,the effective absorption bandwidth(EAB)of S0.5 was as high as 7.3 GHz,exceeding those of most CoFe_(2)O_(4)-based absorbents.Moreover,the EAB of S1.5 reached 5.0 GHz(8.9–13.9 GHz),covering most of the X band,owing to the intense polarization provided by lattice defects and the heterogeneous interface.The three-dimensional(3D)foam structure circumvented the high density and magnetic agglomeration issues of CoFe_(2)O_(4)nanoparticles,and the good conductivity of 2D curved surfaces could effectively elevate the complex permittivity to ameliorate the dielectric loss of pure CoFe_(2)O_(4).This study provides a novel idea for the theoretical design and practical production of lightweight and broadband pure ferrites.
基金financially supported by the National Natural Science Foundation of China (No. 52102113)the Nature Science Foundation of Shaanxi in China (No. 2022JQ-323)+1 种基金the Creative Research Foundation of the Science and Technology on Thermostructural Composite Materials LaboratoryNatural Science Foundation and Department of Education of Shaanxi in China (No. 21JK0912)
文摘The demand of high-end electromagnetic wave absorbing materials puts forward higher requirements on comprehensive performances of small thickness,lightweight,broadband,and strong absorption.Herein,a novel multi-layer stepped metamaterial absorber with gradient electromagnetic properties is proposed.The complex permittivity and permeability of each layer are tailored via the proportion of carbonyliron and carbon-fiber dispersing into the epoxy resin.The proposed metamaterial is further optimized via adjusting the electromagnetic parameters and geometric sizes of each layer.Comparing with the four-layer composite with gradient electromagnetic properties which could only realize reflection loss(RL)of less than−6 dB in 2.0-40 GHz,the optimized stepped metamaterial with the same thickness and electromagnetic properties realizes less than−10 dB in the relevant frequency range.Additionally,the RL of less than−15 dB is achieved in the frequency range of 11.2-21.4 GHz and 28.5-40 GHz.The multiple electromagnetic wave absorption mechanism is discussed based on the experimental and simulation results,which is believed to be attributed to the synergy effect induced by multi-scale structures of the metamaterial.Therefore,combining multi-layer structures and periodic stepped structures into a novel gradient absorbing metamaterial would give new insights into designing microwave absorption devices for broadband electromagnetic protections.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11702120,11372120,11421062,and 11572143)the Fundamental Research Funds for the Central Universities,China(Grant No.lzujbky-2016-106)
文摘In this paper, a novel magnetoelectric(ME) composite structure is proposed, and the ME response in the structure is measured at the bias magnetic field up to 2000 Oe(1 Oe = 79.5775 A·m^(-1)) and the excitation frequency of alternating magnetic field ranging from 1 kHz to 200 kHz. The ME voltage of each PZT layer is detected. According to the measurement results, the phase differences are observed among three channels and the multi-peak phenomenon appears in each channel. Meanwhile, the results show that the ME structure can stay a relatively high ME response within a wide bandwidth.Besides, the hysteretic loops of three PZT layers are observed. When the frequency of alternating current(AC) magnetic field changes, the maximum value of ME coefficient appears in different layers due to the multiple vibration modes of the structure. Moreover, a finite element analysis is performed to evaluate the resonant frequency of the structure, and the theoretical calculating results accord well with the experimental results. The experiment results suggest that the proposed structure may be a good candidate for designing broadband magnetic field sensors.
基金the financial support by National Natural Science Foundation of China under contract No.61905031,61905073National Key R&D Program of China under contract No.2020YFC1522900Natural Science Foundation of Chongqing under contract No.CSTB2023NSCQMSX0992。
文摘Benefiting from the abrupt phase changes within subwavelength thicknesses,metasurfaces have been widely applied for lightweight and compact optical systems.Simultaneous broadband and high-efficiency characteristics are highly attractive for the practical implementation of metasurfaces.However,current metasurface devices mostly adopt discrete micro/nano structures,which rarely realize both merits simultaneously.In this paper,dielectric metasurfaces composed of quasi-continuous nanostrips are proposed to overcome this limitation.Via quasi-continuous nanostrips metasurface,a normal focusing metalens and a superoscillatory lens overcoming the diffraction limit are designed and experimentally demonstrated.The quasi-continuous metadevices can operate in a broadband wavelength ranging from 450 nm to 1000nm and keep a high power efficiency.The average efficiency of the fabricated metalens reaches 54.24%,showing a significant improvement compared to the previously reported metalenses with the same thickness.The proposed methodology can be easily extended to design other metadevices with the advantages of broadband and high-efficiency in practical optical systems.
基金supported by the Research Program for excellent Ph.D. dissertations in the Chinese Academy of Science
文摘The characteristics of net radiation (Rn) (0.3-10 μm) in Lhasa and Haibei in the Tibetan Plateau were analyzed based on long-term in-situ measurements of surface radiation data. The monthly average of daily Rn reached a minimum during the winter period followed by an increase until May and then a decline until January. This variation is consistent with solar activity. The annual mean daily total Rn values were 0.92 MJ m^-2 d^-1 and 0.66 MJ m-2 d-1 in Lhasa and Haibei, respectively. A relationship between Rn and broadband solar radiation (Rs) was demonstrated by a good linear correlation at the two sites. Rn can be an accurate estimate from Rs. The estimated Rn values were similar to the observed values, and the relative deviations between the estimates and measurements of Rn were 2.8% and 3.8% in Lhasa and Haibei, respectively. The application of the Rn estimating model to other locations showed that it could provide acceptable estimated Rn values from the Rs data. Furthermore, we analyzed the influence of clouds on Rn by different clear index (Ks), defined as the ratio of Rs to the extraterrestrial solar irradiance on a horizontal surface. The results indicate that more accurate results are associated with increased cloudy conditions. The influence of the albedo was also considered, but its inclusion in the model resulted in only a slight improvement. Because surface albedo is not usually measured, an expression based solely ou global solar radiation could be of more extensive use.
基金supported by the National Natural Science Foundation of China(No.51702197)Creative Research Foundation of the Science and Technology on Thermostructural Composite Materials Laboratory,the Natural Science Foundation of Shaanxi Province(No.2022JM248)the Doctoral Scientific Research Foundation of Shaanxi University of Science&Technology(No.BJ16-06)。
文摘For electromagnetic wave-absorbing materials,maximizing absorption at a specific frequency has been constantly achieved,but enhancing the absorption properties in the entire band remains a challenge.In this work,a 3D porous pyrolytic carbon(PyC)foam matrix was synthesized by a template method.Amorphous carbon nanotubes(CNTs)were then in-situ grown on the matrix surface to obtain ultralight CNTs/Py C foam.These in-situ grown amorphous CNTs were distributed uniformly and controlled by the catalytic growth time and can enhance the interface polarization and conduction loss of composites.When the electromagnetic wave enters the internal holes,the electromagnetic energy can be completely attenuated under the combined action of polarization,conductivity loss,and multiple reflections.The ultralight CNTs/Py C foam had a density of 22.0 mg·cm^(-3)and a reflection coefficient lower than-13.3 d B in the whole X-band(8.2-12.4 GHz),which is better than the conventional standard of effective absorption bandwidth(≤-10 dB).The results provide ideas for researching ultralight and strong electromagnetic wave absorbing materials in the X-band.
文摘This paper, using the frequency bandwidth, where both the gain and the VSWR (Voltage Standing Wave Ratio) of a monopole can satisfy the design requirement, as object function, mainly describes the process, in which the load locations, the matching network topology and their component values are optimized by the AGA (Adaptive Genetic Algorithm), to achieve a gain more than -2 dB in horizontal direction and a VSWR less than 3 in bandwidth as wide as possible. Moreover the design results are presented for monopoles with two concentrated loadings. It shows that the AGA is an effective method for designing wideband antennas.