We present an experimental study on low-threshold broadband spectrum generation mainly due to the amplirfication of the cascaded stimulated Raman scattering (SRS) effect in a four-stage fiber master oscillator power...We present an experimental study on low-threshold broadband spectrum generation mainly due to the amplirfication of the cascaded stimulated Raman scattering (SRS) effect in a four-stage fiber master oscillator power amplifier system. The cascaded SRS is achieved by using a long passive fiber pumped by a pulsed fiber laser cen: tered at wavelength 1064 nm. The amplified spontaneous emission during the amplification process is efficiently suppressed by cutting the length of the passive fiber and by using a double-clad ytterbium-doped fiber amplifier. The generated broadband spectrum spans from 960nm to 1700nm with maximum average output 13.6 W and average spectral power density approximately 17. 7 mW/nm.展开更多
A novel artificial magnetic conductor(AMC) metasurface is proposed with ultra-wideband 180?phase difference for radar cross section(RCS) reduction. It is composed of two dual-resonant AMC cells, which enable a br...A novel artificial magnetic conductor(AMC) metasurface is proposed with ultra-wideband 180?phase difference for radar cross section(RCS) reduction. It is composed of two dual-resonant AMC cells, which enable a broadband phase difference of 180°±30°from 7.9 GHz to 19.2 GHz to be achieved. A novel strategy is devised by dividing each rectangular grid in a chessboard configuration into four triangular grids, leading to a further reduction of peak bistatic RCS. Both fullwave simulation and measurement results show that the proposed metasurface presents a good RCS reduction property over an ultra-wideband frequency range.展开更多
The basic principles of target detection by forward acoustic scattering are presented.A direct blast suppression approach based on adaptive filtering(DBS-AF) is proposed to suppress the direct blast.The DBS-AF techniq...The basic principles of target detection by forward acoustic scattering are presented.A direct blast suppression approach based on adaptive filtering(DBS-AF) is proposed to suppress the direct blast.The DBS-AF technique is extended to the linear frequency modulation(LFM) signal,where the envelope of the signal is regarded as a 'general waveform' and imported into the adaptive filter.Application of the DBS-AF method to the data collected from a lake trial yields an output detection curve,in which the direct blast is mapped to the background while the acoustic field aberration is represented by the peak value fluctuation.The inhibitory effect in single hydrophone is approximately- 5 dB,and is then enhanced by exploiting the mean value removal approach as a preprocessing technique.The direct blast is further suppressed to a level of-10 dB by making full use of multichannel receptions.The main factors affecting the algorithm performance are as follows:the fluctuation degree of the receptions during the weighting vector training period and the power ratio of the forward scattered wave to the direct blast when the target is present.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 11404404the Outstanding Youth Fund Project of Hunan Provincethe Fund of Innovation of National University of Defense Technology under Grant No B120701
文摘We present an experimental study on low-threshold broadband spectrum generation mainly due to the amplirfication of the cascaded stimulated Raman scattering (SRS) effect in a four-stage fiber master oscillator power amplifier system. The cascaded SRS is achieved by using a long passive fiber pumped by a pulsed fiber laser cen: tered at wavelength 1064 nm. The amplified spontaneous emission during the amplification process is efficiently suppressed by cutting the length of the passive fiber and by using a double-clad ytterbium-doped fiber amplifier. The generated broadband spectrum spans from 960nm to 1700nm with maximum average output 13.6 W and average spectral power density approximately 17. 7 mW/nm.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61372034 and 61501499)
文摘A novel artificial magnetic conductor(AMC) metasurface is proposed with ultra-wideband 180?phase difference for radar cross section(RCS) reduction. It is composed of two dual-resonant AMC cells, which enable a broadband phase difference of 180°±30°from 7.9 GHz to 19.2 GHz to be achieved. A novel strategy is devised by dividing each rectangular grid in a chessboard configuration into four triangular grids, leading to a further reduction of peak bistatic RCS. Both fullwave simulation and measurement results show that the proposed metasurface presents a good RCS reduction property over an ultra-wideband frequency range.
基金supported by the National Natural Science Foundation of China(11174235,61571366)
文摘The basic principles of target detection by forward acoustic scattering are presented.A direct blast suppression approach based on adaptive filtering(DBS-AF) is proposed to suppress the direct blast.The DBS-AF technique is extended to the linear frequency modulation(LFM) signal,where the envelope of the signal is regarded as a 'general waveform' and imported into the adaptive filter.Application of the DBS-AF method to the data collected from a lake trial yields an output detection curve,in which the direct blast is mapped to the background while the acoustic field aberration is represented by the peak value fluctuation.The inhibitory effect in single hydrophone is approximately- 5 dB,and is then enhanced by exploiting the mean value removal approach as a preprocessing technique.The direct blast is further suppressed to a level of-10 dB by making full use of multichannel receptions.The main factors affecting the algorithm performance are as follows:the fluctuation degree of the receptions during the weighting vector training period and the power ratio of the forward scattered wave to the direct blast when the target is present.