A quantum broadcast communication and authentication protocol with a quantum one-time pad based on the Greenberger-Horne-Zeilinger state is proposed. A binary string is used to express the identity of the receiver, wh...A quantum broadcast communication and authentication protocol with a quantum one-time pad based on the Greenberger-Horne-Zeilinger state is proposed. A binary string is used to express the identity of the receiver, which is encoded as a single sequence of photons. The encoded photon sequence acts as a detection sequence and implements au- thentication. An XOR operation serves as a one-time pad and is used to ensure the security of the protocol. The binary string is reused even in a noisy channel and proves to be unconditionally secure. In contrast with the protocols proposed by Wang et al. [Chin. Phys. 16 1868 (2007)] and Yang et al. [Chin. Phys. B 19 070304 (2010)], the protocol in this study implements the identity authentication with a reusable binary string; no hash function or local unitary operation is used. The protocol in this study is also easier to implement and highly efficient without losing security.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.61370203)the Science and Technology Support Project of Sichuan Province,China(Grant No.13ZC2138)the Fund for Young Persons Project of Sichuan Province,China(Grant No.12ZB017)
文摘A quantum broadcast communication and authentication protocol with a quantum one-time pad based on the Greenberger-Horne-Zeilinger state is proposed. A binary string is used to express the identity of the receiver, which is encoded as a single sequence of photons. The encoded photon sequence acts as a detection sequence and implements au- thentication. An XOR operation serves as a one-time pad and is used to ensure the security of the protocol. The binary string is reused even in a noisy channel and proves to be unconditionally secure. In contrast with the protocols proposed by Wang et al. [Chin. Phys. 16 1868 (2007)] and Yang et al. [Chin. Phys. B 19 070304 (2010)], the protocol in this study implements the identity authentication with a reusable binary string; no hash function or local unitary operation is used. The protocol in this study is also easier to implement and highly efficient without losing security.