Digital broadcasting system has become a high-light of research on computer application. To respond to the changes of the playbill in the broadcasting system in real time, the response time of the system must be studi...Digital broadcasting system has become a high-light of research on computer application. To respond to the changes of the playbill in the broadcasting system in real time, the response time of the system must be studied. There is scarcely the research on this area currently. The influence factors in the response time are analyzed; the model on the response time of the system service is built; how the influence factors affect the response time of the system service is validated; and four improvement measures are proposed to minimize the response time of system service.展开更多
In this paper,we study the advantages of cooperation in broadcasting systems from a geosynchronous earth orbit(GEO)satellite to mobile terminals(MTs),achieved through a terrestrial complementary ground station(CGS) wi...In this paper,we study the advantages of cooperation in broadcasting systems from a geosynchronous earth orbit(GEO)satellite to mobile terminals(MTs),achieved through a terrestrial complementary ground station(CGS) with fixed installment,which acts as a relay.Moreover and in the context of the digital video broadcasting-satellite-to-handheld(DVB-SH) standard,the performance improvements offered by the rotated constellations method are investigated,where prior transmission,a phase rotation of the transmitted symbols by a fixed angle is applied followed by a random component interleaver.Turbo codes with soft decision decoding and appropriate random channel interleavers are also considered.We present analytical expressions for the bit log-likelihood ratios(LLRs)that are needed for soft decision decoding at the MT turbo decoder,while the code combining technique is adapted to improve the end-to-end(E2E) performance.Then,we obtain through extensive computer simulations the average bit error probability(ABEP) of quadrature phase-shift keying(QPSK) signals received over pure land-mobile satellite(LMS)and pure CGS links for coding rates 1/3 and6/7.Moreover,the optimal rotation angles are obtained for both links.E2 E ABEP results are then presented assuming cooperation between GEO and CGS,while the power allocation issue is investigated under fixed total transmission power.Our performance evaluation results show that by using the constellation rotation technique,a performance gain can be achieved for high coding rates.展开更多
We put forth a project, that is: using the backscatter technique to realize adaptive long-distance HF broadcasting system in order to improve the quality of HF broadcasting. Then, we analyze errors of the system due t...We put forth a project, that is: using the backscatter technique to realize adaptive long-distance HF broadcasting system in order to improve the quality of HF broadcasting. Then, we analyze errors of the system due to the deviation of the ionospheric parameters' prediction. From the analysis, we draw the conclusion that our project is feasible. In addition, we point out that we can use frequency-spreading and information-coding technique to acquire more clear ionograms. We also offer a judgment on how to choose the control propagation mode on condition of multihop and the existence of more than one propagation mode on the signals' path.展开更多
With the rapid development of the modem information technologies,to promote the education informatization and share the educational and teaching resources,the live classroom in the distance education emerges as the ti...With the rapid development of the modem information technologies,to promote the education informatization and share the educational and teaching resources,the live classroom in the distance education emerges as the times require.The live classroom expands the space-time boundaries in our education and teaching,and changes the traditional teaching methods.It is a new model of the distance education.In order to recognize and understand the impact of the live teaching on the dance teaching and promote the development of the live teaching in the dance education,this paper,from the perspective of the distance education,uses the theories and methods of the distance education to analyze the characteristics of the live teaching,which is a feasible way.展开更多
In the era of network live broadcasting for everyone,the development of live broadcasting platforms is also more intelligent and diversified.However,in the face of a large group of elderly users,the interface interact...In the era of network live broadcasting for everyone,the development of live broadcasting platforms is also more intelligent and diversified.However,in the face of a large group of elderly users,the interface interaction design mode used is still mainly based on the interaction mode for young groups,and is not designed for elderly users.Therefore,a design method for optimizing the interaction interface of live broadcasting platform for elderly users was proposed in this study.Firstly,the case study method and Delphi expert survey method were used to determine the design needs of elderly users and the design mode was analysed.Secondly,the orthogonal design principle was used to design a test sample of the interactive interface of live broadcasting platform applicable for the elderly users,and then a user evaluation system was established to calculate the weights of the design elements using hierarchical analysis,and then the predictive relationship between the design mode of the interactive interface of live broadcasting platform and the elderly users was established by Quantitative Theory I.Finally,Genetic Algorithm was applied to generate the optimized design scheme.The results showed that the design method based on the Genetic Algorithm and the combination of Quantitative Theory can scientifically and effectively optimize the design of the interactive interface of the live broadcasting platform for the elderly users,and improve the experience of the elderly users.展开更多
Conditional access system (CAS) is a key technical component in digital TV broadcasting through which TV op-erators manage the appropriate rights of different subscribers in order to protect their commercial benefits....Conditional access system (CAS) is a key technical component in digital TV broadcasting through which TV op-erators manage the appropriate rights of different subscribers in order to protect their commercial benefits. The normal digital TV receiver can only receive and decode the pay TV programs scrambled by one specific CAS. In this paper, the authors proposed a smartcard conditional access interface (SCAI) scheme in order to make the digital TV receiver be a common receiving platform independent of any specific CAS employed at the broadcasting head-end. As a result, it only needs to include a common condi-tional access software package (CCAP) without any requirement of hardware modification in the receiver. Comparison between the two mentioned DVB-CI-based schemes showed that the cost of such kind receiver is greatly reduced. The main design points of the proposed scheme and its reference implementation’s architecture are presented in this paper. This scheme is also one of the candidate national standards for Chinese digital TV broadcasting industry.展开更多
Communication overhead is an important factor in massively parallel processing systems and it has a dramatic influence on the performance of systems. If it can be implemented as quickly as possible, then the performan...Communication overhead is an important factor in massively parallel processing systems and it has a dramatic influence on the performance of systems. If it can be implemented as quickly as possible, then the performance of systems can be greatly improved. Based on the TORUS interconnection network, this paper presents the pipelining broadcasting, which reduces the broadcasting delay and improve the performance of systems.展开更多
In order to enhance the accuracy and reliability of wireless location under non-line-of-sight (NLOS) environments,a novel neural network (NN) location approach using the digital broadcasting signals is presented. ...In order to enhance the accuracy and reliability of wireless location under non-line-of-sight (NLOS) environments,a novel neural network (NN) location approach using the digital broadcasting signals is presented. By the learning ability of the NN and the closely approximate unknown function to any degree of desired accuracy,the input-output mapping relationship between coordinates and the measurement data of time of arrival (TOA) and time difference of arrival (TDOA) is established. A real-time learning algorithm based on the extended Kalman filter (EKF) is used to train the multilayer perceptron (MLP) network by treating the linkweights of a network as the states of the nonlinear dynamic system. Since the EKF-based learning algorithm approximately gives the minimum variance estimate of the linkweights,the convergence is improved in comparison with the backwards error propagation (BP) algorithm. Numerical results illustrate thatthe proposedalgorithmcanachieve enhanced accuracy,and the performance ofthe algorithmis betterthanthat of the BP-based NN algorithm and the least squares (LS) algorithm in the NLOS environments. Moreover,this location method does not depend on a particular distribution of the NLOS error and does not need line-of-sight ( LOS ) or NLOS identification.展开更多
Degraded broadcast channels(DBC) are a typical multiuser communication scenario, Semantic communications over DBC still lack in-depth research. In this paper, we design a semantic communications approach based on mult...Degraded broadcast channels(DBC) are a typical multiuser communication scenario, Semantic communications over DBC still lack in-depth research. In this paper, we design a semantic communications approach based on multi-user semantic fusion for wireless image transmission over DBC. The transmitter extracts semantic features for two users separately and then effectively fuses them for broadcasting by leveraging semantic similarity. Unlike traditional allocation of time, power, or bandwidth, the semantic fusion scheme can dynamically control the weight of the semantic features of the two users to balance their performance. Considering the different channel state information(CSI) of both users over DBC,a DBC-Aware method is developed that embeds the CSI of both users into the joint source-channel coding encoder and fusion module to adapt to the channel.Experimental results show that the proposed system outperforms the traditional broadcasting schemes.展开更多
With the gradual popularization of 5G communications,the application of multi-antenna broadcasting technology has become widespread.Therefore,this study aims to investigate the wireless covert communication in the two...With the gradual popularization of 5G communications,the application of multi-antenna broadcasting technology has become widespread.Therefore,this study aims to investigate the wireless covert communication in the two-user cooperative multi-antenna broadcast channel.We focus on the issue that the deteriorated reliability and undetectability are mainly affected by the transmission power.To tackle this issue,we design a scheme based on beamforming to increase the reliability and undetectability of wireless covert communication in the multi-antenna broadcast channel.We first modeled and analyzed the cooperative multi-antenna broadcasting system,and put forward the target question.Then we use the SCA(successive convex approximation)algorithm to transform the target problem into a series of convex subproblems.Then the convex problems are solved and the covert channel capacity is calculated.In order to verify the effectiveness of the scheme,we conducted simulation verification.The simulation results show that the proposed beamforming scheme can effectively improve the reliability and undetectability of covert communication in multi-antenna broadcast channels.展开更多
Broadcasting gateway equipment generally uses a method of simply switching to a spare input stream when a failure occurs in a main input stream.However,when the transmission environment is unstable,problems such as re...Broadcasting gateway equipment generally uses a method of simply switching to a spare input stream when a failure occurs in a main input stream.However,when the transmission environment is unstable,problems such as reduction in the lifespan of equipment due to frequent switching and interruption,delay,and stoppage of services may occur.Therefore,applying a machine learning(ML)method,which is possible to automatically judge and classify network-related service anomaly,and switch multi-input signals without dropping or changing signals by predicting or quickly determining the time of error occurrence for smooth stream switching when there are problems such as transmission errors,is required.In this paper,we propose an intelligent packet switching method based on the ML method of classification,which is one of the supervised learning methods,that presents the risk level of abnormal multi-stream occurring in broadcasting gateway equipment based on data.Furthermore,we subdivide the risk levels obtained from classification techniques into probabilities and then derive vectorized representative values for each attribute value of the collected input data and continuously update them.The obtained reference vector value is used for switching judgment through the cosine similarity value between input data obtained when a dangerous situation occurs.In the broadcasting gateway equipment to which the proposed method is applied,it is possible to perform more stable and smarter switching than before by solving problems of reliability and broadcasting accidents of the equipment and can maintain stable video streaming as well.展开更多
We consider an image semantic communication system in a time-varying fading Gaussian MIMO channel,with a finite number of channel states.A deep learning-aided broadcast approach scheme is proposed to benefit the adapt...We consider an image semantic communication system in a time-varying fading Gaussian MIMO channel,with a finite number of channel states.A deep learning-aided broadcast approach scheme is proposed to benefit the adaptive semantic transmission in terms of different channel states.We combine the classic broadcast approach with the image transformer to implement this adaptive joint source and channel coding(JSCC)scheme.Specifically,we utilize the neural network(NN)to jointly optimize the hierarchical image compression and superposition code mapping within this scheme.The learned transformers and codebooks allow recovering of the image with an adaptive quality and low error rate at the receiver side,in each channel state.The simulation results exhibit our proposed scheme can dynamically adapt the coding to the current channel state and outperform some existing intelligent schemes with the fixed coding block.展开更多
Channel equalization plays a pivotal role within the reconstruction phase of passive radar reference signals.In the context of reconstructing digital terrestrial multimedia broadcasting(DTMB)signals for low-slow-small...Channel equalization plays a pivotal role within the reconstruction phase of passive radar reference signals.In the context of reconstructing digital terrestrial multimedia broadcasting(DTMB)signals for low-slow-small(LSS)target detection,a novel frequency domain block joint equalization algorithm is presented in this article.From the DTMB signal frame structure and channel multipath transmission characteristics,this article adopts a unconventional approach where the delay and frame structure of each DTMB signal frame are reconfigured to create a circular convolution block,facilitating concurrent fast Fourier transform(FFT)calculations.Following equalization,an inverse fast Fourier transform(IFFT)-based joint output and subsequent data reordering are executed to finalize the equalization process for the DTMB signal.Simulation and measured data confirm that this algorithm outperforms conventional techniques by reducing signal errors rate and enhancing real-time processing.In passive radar LSS detection,it effectively suppresses multipath and noise through frequency domain equalization,reducing false alarms and improving the capabilities of weak target detection.展开更多
Broadcasting is an important operation and been widely used in wireless sensor networks (WSNs). These networks are power constrained as nodes operate with limited battery power. Wireless sensor networks are spatial ...Broadcasting is an important operation and been widely used in wireless sensor networks (WSNs). These networks are power constrained as nodes operate with limited battery power. Wireless sensor networks are spatial graphs that have much more clustered and much high path-length characteristics. After considering energy- efficient broadcasting in such networks, by combining the small-world characteristic of WSNs and the properties of ant algorithm to quickly identify an optimal path, small-world power-aware broadcast algorithm is introduced and evaluated. Given different densities of network, simulation results show that our algorithm significantly improves life of networks and also reduces communication distances and power consumption.展开更多
In this paper, we propose a classical secret broadcasting and splitting joint protocol in a quantum scenario. With those genuinely entangled states, the boss can always broadcast some of his secrets and split some oth...In this paper, we propose a classical secret broadcasting and splitting joint protocol in a quantum scenario. With those genuinely entangled states, the boss can always broadcast some of his secrets and split some others to multi- receivers at the same time. The efficiency of the joint protocol is also compared with that of two separate ones which realise classical secret broadcasting and classical secret splitting respectively, and based on the comparison we can see the promising advantage of our joint protocol is that it can realise the two tasks more efficiently and more conveniently.展开更多
Wireless sensor networks (WSNs) consist of sensor nodes that broadcast a message within a network. Efficient broadcasting is a key requirement in sensor networks and has been a focal point of research over the last ...Wireless sensor networks (WSNs) consist of sensor nodes that broadcast a message within a network. Efficient broadcasting is a key requirement in sensor networks and has been a focal point of research over the last few years. There are many challenging tasks in the network, including redundancy control and sensor node localization that mainly depend on broadcasting. In this paper, we propose a broadcasting algorithm to control redundancy and improve localization (BACRIL) in WSNs. The proposed algorithm incorporates the benefits of the gossip protocol for optimizing message broadcasting within the network. Simulation results show a controlled level of redundancy, which is up to 57.6% if the number of sensor nodes deployed in a 500 m×500 m area are increased from 50 to 500.展开更多
The multilevel modulation techniques nf M-Differential Amplitude Phase Shift Keying (DAPSK) have been proposed in combination with Turbo code scheme for digital radio broadcasting bands below 30 MHz radio channel. Com...The multilevel modulation techniques nf M-Differential Amplitude Phase Shift Keying (DAPSK) have been proposed in combination with Turbo code scheme for digital radio broadcasting bands below 30 MHz radio channel. Comparison of this modulation method with channel coding in an Additive White Gaussian Noise (AWGN) and multi-path fading channels has been presented. The analysis provides an iterative decoding of the Turbo code.展开更多
As the 2nd generation digital terrestrial television broadcasting(DTTB)standard,digital terrestrial/television multimedia broadcasting-advanced(DTMB-A)can provide higher spectrum efficiency and transmission reliabilit...As the 2nd generation digital terrestrial television broadcasting(DTTB)standard,digital terrestrial/television multimedia broadcasting-advanced(DTMB-A)can provide higher spectrum efficiency and transmission reliability by adopting flexible frame structure and advanced forward error correction coding compared with the 1 st generation DTTB systems.In order to increase the flexibility and robustness of the DTTB network,the frequency reuse scheme of factor one(reuse-1)is proposed,where the same RF channel is used by different stations covering the adjacent service areas.However,it demands a very low carrier-tonoise ratio(C/N)threshold below 0 dB at the DTTB physical layer.In this paper,a robust broadcasting technique is proposed based on DTMB-A with newly designed low-rate low density parity check(LDPC)codes.By adopting quasi-cyclic(QC)Raptor-like structure and progressive lifting method,the high performance low-rate LDPC codes are designed supporting multiple code lengths.Both density-evolution analyses and laboratory measurements demonstrate that DTMB-A with low-rate coding can complete the demodulation reliably with the C/N threshold below0 d B,which is one important necessary condition to support frequency reuse-1 scheme.展开更多
With the increasing popularity of solid sate lighting devices, Visible Light Communication (VLC) is globally recognized as an advanced and promising technology to realize short-range, high speed as well as large capac...With the increasing popularity of solid sate lighting devices, Visible Light Communication (VLC) is globally recognized as an advanced and promising technology to realize short-range, high speed as well as large capacity wireless data transmission. In this paper, we propose a prototype of real-time audio and video broadcast system using inexpensive commercially available light emitting diode (LED) lamps. Experimental results show that real-time high quality audio and video with the maximum distance of 3 m can be achieved through proper layout of LED sources and improvement of concentration effects. Lighting model within room environment is designed and simulated which indicates close relationship between layout of light sources and distribution of illuminance.展开更多
文摘Digital broadcasting system has become a high-light of research on computer application. To respond to the changes of the playbill in the broadcasting system in real time, the response time of the system must be studied. There is scarcely the research on this area currently. The influence factors in the response time are analyzed; the model on the response time of the system service is built; how the influence factors affect the response time of the system service is validated; and four improvement measures are proposed to minimize the response time of system service.
基金Support to the SatNEx-Ⅲ Network of Experts (SatNEx-Ⅲ) CoO2,2011-2012
文摘In this paper,we study the advantages of cooperation in broadcasting systems from a geosynchronous earth orbit(GEO)satellite to mobile terminals(MTs),achieved through a terrestrial complementary ground station(CGS) with fixed installment,which acts as a relay.Moreover and in the context of the digital video broadcasting-satellite-to-handheld(DVB-SH) standard,the performance improvements offered by the rotated constellations method are investigated,where prior transmission,a phase rotation of the transmitted symbols by a fixed angle is applied followed by a random component interleaver.Turbo codes with soft decision decoding and appropriate random channel interleavers are also considered.We present analytical expressions for the bit log-likelihood ratios(LLRs)that are needed for soft decision decoding at the MT turbo decoder,while the code combining technique is adapted to improve the end-to-end(E2E) performance.Then,we obtain through extensive computer simulations the average bit error probability(ABEP) of quadrature phase-shift keying(QPSK) signals received over pure land-mobile satellite(LMS)and pure CGS links for coding rates 1/3 and6/7.Moreover,the optimal rotation angles are obtained for both links.E2 E ABEP results are then presented assuming cooperation between GEO and CGS,while the power allocation issue is investigated under fixed total transmission power.Our performance evaluation results show that by using the constellation rotation technique,a performance gain can be achieved for high coding rates.
文摘We put forth a project, that is: using the backscatter technique to realize adaptive long-distance HF broadcasting system in order to improve the quality of HF broadcasting. Then, we analyze errors of the system due to the deviation of the ionospheric parameters' prediction. From the analysis, we draw the conclusion that our project is feasible. In addition, we point out that we can use frequency-spreading and information-coding technique to acquire more clear ionograms. We also offer a judgment on how to choose the control propagation mode on condition of multihop and the existence of more than one propagation mode on the signals' path.
文摘With the rapid development of the modem information technologies,to promote the education informatization and share the educational and teaching resources,the live classroom in the distance education emerges as the times require.The live classroom expands the space-time boundaries in our education and teaching,and changes the traditional teaching methods.It is a new model of the distance education.In order to recognize and understand the impact of the live teaching on the dance teaching and promote the development of the live teaching in the dance education,this paper,from the perspective of the distance education,uses the theories and methods of the distance education to analyze the characteristics of the live teaching,which is a feasible way.
文摘In the era of network live broadcasting for everyone,the development of live broadcasting platforms is also more intelligent and diversified.However,in the face of a large group of elderly users,the interface interaction design mode used is still mainly based on the interaction mode for young groups,and is not designed for elderly users.Therefore,a design method for optimizing the interaction interface of live broadcasting platform for elderly users was proposed in this study.Firstly,the case study method and Delphi expert survey method were used to determine the design needs of elderly users and the design mode was analysed.Secondly,the orthogonal design principle was used to design a test sample of the interactive interface of live broadcasting platform applicable for the elderly users,and then a user evaluation system was established to calculate the weights of the design elements using hierarchical analysis,and then the predictive relationship between the design mode of the interactive interface of live broadcasting platform and the elderly users was established by Quantitative Theory I.Finally,Genetic Algorithm was applied to generate the optimized design scheme.The results showed that the design method based on the Genetic Algorithm and the combination of Quantitative Theory can scientifically and effectively optimize the design of the interactive interface of the live broadcasting platform for the elderly users,and improve the experience of the elderly users.
基金Project (No. 200442) supported by the Electronics DevelopmentFoundation for the Key Industrialization Project of the Ministry of0Information Industry, China
文摘Conditional access system (CAS) is a key technical component in digital TV broadcasting through which TV op-erators manage the appropriate rights of different subscribers in order to protect their commercial benefits. The normal digital TV receiver can only receive and decode the pay TV programs scrambled by one specific CAS. In this paper, the authors proposed a smartcard conditional access interface (SCAI) scheme in order to make the digital TV receiver be a common receiving platform independent of any specific CAS employed at the broadcasting head-end. As a result, it only needs to include a common condi-tional access software package (CCAP) without any requirement of hardware modification in the receiver. Comparison between the two mentioned DVB-CI-based schemes showed that the cost of such kind receiver is greatly reduced. The main design points of the proposed scheme and its reference implementation’s architecture are presented in this paper. This scheme is also one of the candidate national standards for Chinese digital TV broadcasting industry.
文摘Communication overhead is an important factor in massively parallel processing systems and it has a dramatic influence on the performance of systems. If it can be implemented as quickly as possible, then the performance of systems can be greatly improved. Based on the TORUS interconnection network, this paper presents the pipelining broadcasting, which reduces the broadcasting delay and improve the performance of systems.
基金The National High Technology Research and Development Program of China (863 Program) (No.2008AA01Z227)the Cultivatable Fund of the Key Scientific and Technical Innovation Project of Ministry of Education of China (No.706028)
文摘In order to enhance the accuracy and reliability of wireless location under non-line-of-sight (NLOS) environments,a novel neural network (NN) location approach using the digital broadcasting signals is presented. By the learning ability of the NN and the closely approximate unknown function to any degree of desired accuracy,the input-output mapping relationship between coordinates and the measurement data of time of arrival (TOA) and time difference of arrival (TDOA) is established. A real-time learning algorithm based on the extended Kalman filter (EKF) is used to train the multilayer perceptron (MLP) network by treating the linkweights of a network as the states of the nonlinear dynamic system. Since the EKF-based learning algorithm approximately gives the minimum variance estimate of the linkweights,the convergence is improved in comparison with the backwards error propagation (BP) algorithm. Numerical results illustrate thatthe proposedalgorithmcanachieve enhanced accuracy,and the performance ofthe algorithmis betterthanthat of the BP-based NN algorithm and the least squares (LS) algorithm in the NLOS environments. Moreover,this location method does not depend on a particular distribution of the NLOS error and does not need line-of-sight ( LOS ) or NLOS identification.
基金supported in part by National Key R&D Project of China (2023YFB2906201)the National Natural Science Foundation of China (62222111, 62125108 and 62431015)the Fundamental Research Funds for the Central Universities。
文摘Degraded broadcast channels(DBC) are a typical multiuser communication scenario, Semantic communications over DBC still lack in-depth research. In this paper, we design a semantic communications approach based on multi-user semantic fusion for wireless image transmission over DBC. The transmitter extracts semantic features for two users separately and then effectively fuses them for broadcasting by leveraging semantic similarity. Unlike traditional allocation of time, power, or bandwidth, the semantic fusion scheme can dynamically control the weight of the semantic features of the two users to balance their performance. Considering the different channel state information(CSI) of both users over DBC,a DBC-Aware method is developed that embeds the CSI of both users into the joint source-channel coding encoder and fusion module to adapt to the channel.Experimental results show that the proposed system outperforms the traditional broadcasting schemes.
基金supported by the National Natural Science Foundation of China(Grants No.U1836104,61772281,61702235,61801073,61931004,62072250).
文摘With the gradual popularization of 5G communications,the application of multi-antenna broadcasting technology has become widespread.Therefore,this study aims to investigate the wireless covert communication in the two-user cooperative multi-antenna broadcast channel.We focus on the issue that the deteriorated reliability and undetectability are mainly affected by the transmission power.To tackle this issue,we design a scheme based on beamforming to increase the reliability and undetectability of wireless covert communication in the multi-antenna broadcast channel.We first modeled and analyzed the cooperative multi-antenna broadcasting system,and put forward the target question.Then we use the SCA(successive convex approximation)algorithm to transform the target problem into a series of convex subproblems.Then the convex problems are solved and the covert channel capacity is calculated.In order to verify the effectiveness of the scheme,we conducted simulation verification.The simulation results show that the proposed beamforming scheme can effectively improve the reliability and undetectability of covert communication in multi-antenna broadcast channels.
基金This work was supported by a research grant from Seoul Women’s University(2023-0183).
文摘Broadcasting gateway equipment generally uses a method of simply switching to a spare input stream when a failure occurs in a main input stream.However,when the transmission environment is unstable,problems such as reduction in the lifespan of equipment due to frequent switching and interruption,delay,and stoppage of services may occur.Therefore,applying a machine learning(ML)method,which is possible to automatically judge and classify network-related service anomaly,and switch multi-input signals without dropping or changing signals by predicting or quickly determining the time of error occurrence for smooth stream switching when there are problems such as transmission errors,is required.In this paper,we propose an intelligent packet switching method based on the ML method of classification,which is one of the supervised learning methods,that presents the risk level of abnormal multi-stream occurring in broadcasting gateway equipment based on data.Furthermore,we subdivide the risk levels obtained from classification techniques into probabilities and then derive vectorized representative values for each attribute value of the collected input data and continuously update them.The obtained reference vector value is used for switching judgment through the cosine similarity value between input data obtained when a dangerous situation occurs.In the broadcasting gateway equipment to which the proposed method is applied,it is possible to perform more stable and smarter switching than before by solving problems of reliability and broadcasting accidents of the equipment and can maintain stable video streaming as well.
基金supported in part by the National Key R&D Project of China under Grant 2020YFA0712300National Natural Science Foundation of China under Grant NSFC-62231022,12031011supported in part by the NSF of China under Grant 62125108。
文摘We consider an image semantic communication system in a time-varying fading Gaussian MIMO channel,with a finite number of channel states.A deep learning-aided broadcast approach scheme is proposed to benefit the adaptive semantic transmission in terms of different channel states.We combine the classic broadcast approach with the image transformer to implement this adaptive joint source and channel coding(JSCC)scheme.Specifically,we utilize the neural network(NN)to jointly optimize the hierarchical image compression and superposition code mapping within this scheme.The learned transformers and codebooks allow recovering of the image with an adaptive quality and low error rate at the receiver side,in each channel state.The simulation results exhibit our proposed scheme can dynamically adapt the coding to the current channel state and outperform some existing intelligent schemes with the fixed coding block.
文摘Channel equalization plays a pivotal role within the reconstruction phase of passive radar reference signals.In the context of reconstructing digital terrestrial multimedia broadcasting(DTMB)signals for low-slow-small(LSS)target detection,a novel frequency domain block joint equalization algorithm is presented in this article.From the DTMB signal frame structure and channel multipath transmission characteristics,this article adopts a unconventional approach where the delay and frame structure of each DTMB signal frame are reconfigured to create a circular convolution block,facilitating concurrent fast Fourier transform(FFT)calculations.Following equalization,an inverse fast Fourier transform(IFFT)-based joint output and subsequent data reordering are executed to finalize the equalization process for the DTMB signal.Simulation and measured data confirm that this algorithm outperforms conventional techniques by reducing signal errors rate and enhancing real-time processing.In passive radar LSS detection,it effectively suppresses multipath and noise through frequency domain equalization,reducing false alarms and improving the capabilities of weak target detection.
文摘Broadcasting is an important operation and been widely used in wireless sensor networks (WSNs). These networks are power constrained as nodes operate with limited battery power. Wireless sensor networks are spatial graphs that have much more clustered and much high path-length characteristics. After considering energy- efficient broadcasting in such networks, by combining the small-world characteristic of WSNs and the properties of ant algorithm to quickly identify an optimal path, small-world power-aware broadcast algorithm is introduced and evaluated. Given different densities of network, simulation results show that our algorithm significantly improves life of networks and also reduces communication distances and power consumption.
文摘In this paper, we propose a classical secret broadcasting and splitting joint protocol in a quantum scenario. With those genuinely entangled states, the boss can always broadcast some of his secrets and split some others to multi- receivers at the same time. The efficiency of the joint protocol is also compared with that of two separate ones which realise classical secret broadcasting and classical secret splitting respectively, and based on the comparison we can see the promising advantage of our joint protocol is that it can realise the two tasks more efficiently and more conveniently.
文摘Wireless sensor networks (WSNs) consist of sensor nodes that broadcast a message within a network. Efficient broadcasting is a key requirement in sensor networks and has been a focal point of research over the last few years. There are many challenging tasks in the network, including redundancy control and sensor node localization that mainly depend on broadcasting. In this paper, we propose a broadcasting algorithm to control redundancy and improve localization (BACRIL) in WSNs. The proposed algorithm incorporates the benefits of the gossip protocol for optimizing message broadcasting within the network. Simulation results show a controlled level of redundancy, which is up to 57.6% if the number of sensor nodes deployed in a 500 m×500 m area are increased from 50 to 500.
基金Supported by the National Natural Science Foundation of China (No.60072013)
文摘The multilevel modulation techniques nf M-Differential Amplitude Phase Shift Keying (DAPSK) have been proposed in combination with Turbo code scheme for digital radio broadcasting bands below 30 MHz radio channel. Comparison of this modulation method with channel coding in an Additive White Gaussian Noise (AWGN) and multi-path fading channels has been presented. The analysis provides an iterative decoding of the Turbo code.
基金supported in part by the National Natural Science Foundation of China(NSFC)under Grant 61931015the Peng Cheng Laboratory under Grant PCL2021A10+1 种基金the Science,Technology and Innovation Commission of Shenzhen Municipality(No.JSGG20201103095805015)sponsored by Tsinghua University-Yunnan Mobile Digital TV Company Ltd.,Joint Research Center(JCICBN)。
文摘As the 2nd generation digital terrestrial television broadcasting(DTTB)standard,digital terrestrial/television multimedia broadcasting-advanced(DTMB-A)can provide higher spectrum efficiency and transmission reliability by adopting flexible frame structure and advanced forward error correction coding compared with the 1 st generation DTTB systems.In order to increase the flexibility and robustness of the DTTB network,the frequency reuse scheme of factor one(reuse-1)is proposed,where the same RF channel is used by different stations covering the adjacent service areas.However,it demands a very low carrier-tonoise ratio(C/N)threshold below 0 dB at the DTTB physical layer.In this paper,a robust broadcasting technique is proposed based on DTMB-A with newly designed low-rate low density parity check(LDPC)codes.By adopting quasi-cyclic(QC)Raptor-like structure and progressive lifting method,the high performance low-rate LDPC codes are designed supporting multiple code lengths.Both density-evolution analyses and laboratory measurements demonstrate that DTMB-A with low-rate coding can complete the demodulation reliably with the C/N threshold below0 d B,which is one important necessary condition to support frequency reuse-1 scheme.
文摘With the increasing popularity of solid sate lighting devices, Visible Light Communication (VLC) is globally recognized as an advanced and promising technology to realize short-range, high speed as well as large capacity wireless data transmission. In this paper, we propose a prototype of real-time audio and video broadcast system using inexpensive commercially available light emitting diode (LED) lamps. Experimental results show that real-time high quality audio and video with the maximum distance of 3 m can be achieved through proper layout of LED sources and improvement of concentration effects. Lighting model within room environment is designed and simulated which indicates close relationship between layout of light sources and distribution of illuminance.