The increasing application of anammox processes suggests their enormous potential for nitrogen removal in wastewater treatment facilities.However,the functional potentials and ecological differentiation of cooccurring...The increasing application of anammox processes suggests their enormous potential for nitrogen removal in wastewater treatment facilities.However,the functional potentials and ecological differentiation of cooccurring anammox species in complex ecosystems have not been well elucidated.Herein,by utilizing functional reconstruction and comparative genome analysis,we deciphered the cooccurring mechanisms of four Candidatus Brocadia species that were spontaneously enriched in a full-scale swine wastewater treatment system.Phylogenetic analysis indicated that species SW172 and SW745 were closely related to Ca.Brocadia caroliniensis and Ca.Brocadia sapporoensis,respectively,whereas the dominant species SW510 and SW773,with a total average abundance of 34.1%,were classified as novel species of the genus Ca.Brocadia.Functional reconstruction revealed that the novel species SW510 can encode both cytochrome cd1-type nitrite reductase and hydroxylamine oxidase for nitrite reduction.In contrast,the detected respiratory pentaheme cytochrome c nitrite reductase and acetate kinase genes suggested that SW773 likely reduced nitrite to ammonium with acetate as a carbon source.Intriguingly,the presence of genes encoding urease and cyanase indicated that both novel species can use diverse organic nitrogen compounds in addition to ammonia and nitrite as substrates.Taken together,the recovery and comparative analysis of these anammox genomes expand our understanding of the functional differentiation and cooccurrence of the genus Ca.Brocadia in wastewater treatment systems.展开更多
Anammox bacteria represent a promising alternative for treating ammonium-rich wastewater. In this work reported, biomass performing anaerobic oxidation of ammonium was enriched in a sequencing batch reactor, from slud...Anammox bacteria represent a promising alternative for treating ammonium-rich wastewater. In this work reported, biomass performing anaerobic oxidation of ammonium was enriched in a sequencing batch reactor, from sludge used for the treatment of high-nitrogen waste from an amino acid-producing industry. After 89 days of operation, both ammonium and nitrite were consumed. During operation under a 24-hour cycle, the applied nitrogen load (ANL) was increased from 155 to 802 mg N/L·d. This strategy resulted in efficiencies of nitrogen removal and nitrogen conversion rate of 91.7% and 98.5%, respectively. Specific anammox activity increased proportionally to ANL and it was partially inhibited at 802 mg N/L·d. Sequencing analysis using 16S rRNA anammox primers, after 170 days of operation, showed that 21 clones were grouped into two OTUs (operational taxonomic units). The identity of the 16S rRNA gene of OTU esp 1 showed similarity to Brocadia species, and OTU esp 2 displayed 99% similarity to Anammoxoglobus propionicus. After 450 days of operation, sequencing analysis using universal primers showed that 48 clones were grouped into 19 OTUs representing six major groups of bacteria: Planctomycetes, beta-Proteobacteria, green sulfur bacteria of the Chlorobi phylum, Nitrospira, Chloroflexi and OP 11. Brocadia sp. was the only anammox bacteria in the biomass at this time.展开更多
The slow initiation of anammox for treating typical domestic wastewater and the relatively high footprint of wastewater treatment infrastructures are major concerns for practical wastewater treatment systems.Herein,a ...The slow initiation of anammox for treating typical domestic wastewater and the relatively high footprint of wastewater treatment infrastructures are major concerns for practical wastewater treatment systems.Herein,a 300 m^(3)/d hybrid biofilm reactor(HBR)process was developed and operated with a short hydraulic retention time(HRT)of 8 h.The analysis of the bacterial community demonstrated that anammox were enriched in the anoxic zone of the HBR process.The percentage abundance of Candidatus Brocadia in the total bacterial community of the anoxic zone increased from 0 at Day 1 to 0.33%at Day 130 and then to 2.89%at Day 213.Based upon the activity of anammox bacteria,the removal of ammonia nitrogen(NH_(4)^(+)-N)in the anoxic zone was approximately 15%.This showed that the nitrogen transformation pathway was enhanced in the HBR system through partial anammox process in the anoxic zone.The final effluent contained 12 mg/L chemical oxygen demand(COD),0.662 mg/L NH_(4)^(+)-N,7.2 mg/L total nitrogen(TN),and 6 mg/L SS,indicating the effectiveness of the HBR process for treating real domestic wastewater.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52000185,51878675,and 51622813)the Natural Science Foundation of Guangdong Province(No.2021A1515010512)the Fundamental Research Funds for the Central Universities,Sun Yat-sen University(No.2021qntd07).
文摘The increasing application of anammox processes suggests their enormous potential for nitrogen removal in wastewater treatment facilities.However,the functional potentials and ecological differentiation of cooccurring anammox species in complex ecosystems have not been well elucidated.Herein,by utilizing functional reconstruction and comparative genome analysis,we deciphered the cooccurring mechanisms of four Candidatus Brocadia species that were spontaneously enriched in a full-scale swine wastewater treatment system.Phylogenetic analysis indicated that species SW172 and SW745 were closely related to Ca.Brocadia caroliniensis and Ca.Brocadia sapporoensis,respectively,whereas the dominant species SW510 and SW773,with a total average abundance of 34.1%,were classified as novel species of the genus Ca.Brocadia.Functional reconstruction revealed that the novel species SW510 can encode both cytochrome cd1-type nitrite reductase and hydroxylamine oxidase for nitrite reduction.In contrast,the detected respiratory pentaheme cytochrome c nitrite reductase and acetate kinase genes suggested that SW773 likely reduced nitrite to ammonium with acetate as a carbon source.Intriguingly,the presence of genes encoding urease and cyanase indicated that both novel species can use diverse organic nitrogen compounds in addition to ammonia and nitrite as substrates.Taken together,the recovery and comparative analysis of these anammox genomes expand our understanding of the functional differentiation and cooccurrence of the genus Ca.Brocadia in wastewater treatment systems.
文摘Anammox bacteria represent a promising alternative for treating ammonium-rich wastewater. In this work reported, biomass performing anaerobic oxidation of ammonium was enriched in a sequencing batch reactor, from sludge used for the treatment of high-nitrogen waste from an amino acid-producing industry. After 89 days of operation, both ammonium and nitrite were consumed. During operation under a 24-hour cycle, the applied nitrogen load (ANL) was increased from 155 to 802 mg N/L·d. This strategy resulted in efficiencies of nitrogen removal and nitrogen conversion rate of 91.7% and 98.5%, respectively. Specific anammox activity increased proportionally to ANL and it was partially inhibited at 802 mg N/L·d. Sequencing analysis using 16S rRNA anammox primers, after 170 days of operation, showed that 21 clones were grouped into two OTUs (operational taxonomic units). The identity of the 16S rRNA gene of OTU esp 1 showed similarity to Brocadia species, and OTU esp 2 displayed 99% similarity to Anammoxoglobus propionicus. After 450 days of operation, sequencing analysis using universal primers showed that 48 clones were grouped into 19 OTUs representing six major groups of bacteria: Planctomycetes, beta-Proteobacteria, green sulfur bacteria of the Chlorobi phylum, Nitrospira, Chloroflexi and OP 11. Brocadia sp. was the only anammox bacteria in the biomass at this time.
基金supported by The Major Science and Technology Program for Water Pollution Control and Treatment(Ministry of Ecology and Environment,China)(No.2017ZX07103-003)and seed fund for Beijing Young Engineering,China.
文摘The slow initiation of anammox for treating typical domestic wastewater and the relatively high footprint of wastewater treatment infrastructures are major concerns for practical wastewater treatment systems.Herein,a 300 m^(3)/d hybrid biofilm reactor(HBR)process was developed and operated with a short hydraulic retention time(HRT)of 8 h.The analysis of the bacterial community demonstrated that anammox were enriched in the anoxic zone of the HBR process.The percentage abundance of Candidatus Brocadia in the total bacterial community of the anoxic zone increased from 0 at Day 1 to 0.33%at Day 130 and then to 2.89%at Day 213.Based upon the activity of anammox bacteria,the removal of ammonia nitrogen(NH_(4)^(+)-N)in the anoxic zone was approximately 15%.This showed that the nitrogen transformation pathway was enhanced in the HBR system through partial anammox process in the anoxic zone.The final effluent contained 12 mg/L chemical oxygen demand(COD),0.662 mg/L NH_(4)^(+)-N,7.2 mg/L total nitrogen(TN),and 6 mg/L SS,indicating the effectiveness of the HBR process for treating real domestic wastewater.