Olefin oligomerization reaction catalyzed by new catalyst systems(a Br?nsted‐acidic ionic liquid as the main catalyst and tricaprylylmethylammonium chloride as the co‐catalyst) has been investigat‐ed. The synthe...Olefin oligomerization reaction catalyzed by new catalyst systems(a Br?nsted‐acidic ionic liquid as the main catalyst and tricaprylylmethylammonium chloride as the co‐catalyst) has been investigat‐ed. The synthesized Br?nsted acidic ionic liquids were characterized by Fourier transform infrared spectroscopy(FT‐IR), ultraviolet‐visible spectroscopy(UV), ^1H nuclear magnetic resonance(NMR), and ^13 C NMR to analyze their structures and acidities. The influence of different ionic liquids, ionic liquid loading, different co‐catalysts, catalyst ratios(mole ratio of ionic liquid to co‐catalyst), reac‐tion time, pressure, temperature, solvent, source of reactants, and the recycling of catalyst systems was studied. Among the synthesized ionic liquids, 1‐(4‐sulfonic acid)butyl‐3‐hexylimidazolium hydrogen sulfate([HIMBs]HSO4) exhibited the best catalytic activity under the tested reaction con‐ditions. The conversion of isobutene and selectivity of trimers were 83.21% and 35.80%, respec‐tively, at the optimum reaction conditions. Furthermore, the catalyst system can be easily separated and reused; a feasible reaction mechanism is proposed on the basis of the distribution of experi‐mental products.展开更多
Five Br?nsted acidic ionic liquids(ILs) were prepared and characterized by FT-IR,~1H NMR and ^(13)C NMR. Their catalytic activities for the synthesis of 2-propanol(IPOH) via transesterification of isopropyl acetate(IP...Five Br?nsted acidic ionic liquids(ILs) were prepared and characterized by FT-IR,~1H NMR and ^(13)C NMR. Their catalytic activities for the synthesis of 2-propanol(IPOH) via transesterification of isopropyl acetate(IPAc) with methanol(Me OH) were investigated. Among all the tested ILs, [Ps-mim]HSO_4 performed best and was used as catalyst for further studies. The reaction kinetics were carried out to correlate the parameters in a homogeneous second order kinetic model. It has been found that there is close agreement between the calculated and experimental values. The high-pressure batch reactive distillation experimental apparatus was set up in order to enhance the conversion of IPAc. A high conversion of IPAc of 99.4% was obtained under the optimal reaction conditions. The catalyst [Ps-mim]HSO_4 can be recycled easily by a rotary evaporator and reused without any further treatment. The catalyst had been repeatedly used for four times and no obvious changes in the structure of catalyst could be observed.展开更多
A series of condensation reactions of unmodified ketones and aromatic aldehydes to prepare α,β-unsaturated carbonyl compounds by means of Aldol reactions in Bronsted acid ionic liquids(BAILs)was explored.1-Butyl-3...A series of condensation reactions of unmodified ketones and aromatic aldehydes to prepare α,β-unsaturated carbonyl compounds by means of Aldol reactions in Bronsted acid ionic liquids(BAILs)was explored.1-Butyl-3-methylimidazolium hydrogen sulphate(BMImHSO4)acting as an effective media and catalyst in aldol reactions was compared with other BAILs,with the advantages of high conversion and selectivity.The product was easily isolated and the left ionic liquid can be readily recovered and reused at least 3 times with almost the same efficiency.The scope and limitation of the present method were explored and the possible catalytic mechanism was speculated.展开更多
Beckmann rearrangements of oximes to lactams often require harsh conditions and/or the use of large amounts of acid catalyst. To reduce the amount of Bronsted acid required, and to avoid the formation of a large amoun...Beckmann rearrangements of oximes to lactams often require harsh conditions and/or the use of large amounts of acid catalyst. To reduce the amount of Bronsted acid required, and to avoid the formation of a large amount of undesirable byproducts under mild reaction conditions, a low environmental load process was developed. Beckmann rearrangements of cyclohexanone oxime and cyclooctanone oxime were achieved using a combination of a Bronsted acid and cobalt tetra-fluoroborate hexahydrate. Various Bronsted acid catalysts (10 - 20 mol%) were used to obtain the corresponding lactams in high yields at 80℃.展开更多
Despite the development of various Lewis acidic nano-adsorbents for fluoride removal through innersphere coordination,strong competition for hydroxyl ions still hinders efficient water defluoridation.In addition,the c...Despite the development of various Lewis acidic nano-adsorbents for fluoride removal through innersphere coordination,strong competition for hydroxyl ions still hinders efficient water defluoridation.In addition,the critical issue of polysilicate scaling that results from the ubiquitous silicates must be addressed.To tackle these issues,an alternative approach to enhancing adsorption reactivity by modifying nano-adsorbents with dual Lewis and Bronsted acidity is proposed.The feasibility of this approach is demonstrated by growing zirconium phosphate(ZrP)inside a gel-type anion exchanger,N201,to produce nanocomposite ZrP@N201,in which the confined ZrP contained an otherwise metastable amorphous phase with Lewis acidic Zr^(4+) sites and Bronsted acidic monohydrogen phosphate groups(-O_(3)POH).Compared with the Lewis acidic nano-zirconium oxide analog(HZ0@N201),ZrP@N201 exhibited a greatly improved adsorption capacity(117.9 vs.52.3 mg/g-Zr)and mass transfer rate(3.56×10^(-6) vs.4.55×10^(-7) cm/s),while bulk ZrP produced a thermodynamically stableα-phase with Bronsted acidity that exhibited negligible adsorption capability toward fluoride.The enhanced defluoridation activity of ZrP@N201 is attributed to Bronsted acidity and the increased outer electron density of ZA+sites,as corroborated using XPS and solid-state NMR analysis.Moreover,Bronsted acidity strengthens the resistance of ZrP@N201 to silicate,allowing its full regeneration during cyclic defluoridation.Column tests demonstrated 3-10 times the amount of clean water from(waste)for ZrP@N201 as compared to both HZO@N201 and the widely used activated aluminum oxide.This study highlights the potential of developing nano-adsorbents with dual acidities for various environmental remediation applications.展开更多
A series of Bronsted acidic ionic liquids(ILs) were prepared and used for Biginelli-type condensation reaction among aromatic aldehydes, urea or thiourea and cyclopentanone. Through this reaction, the synthesis of v...A series of Bronsted acidic ionic liquids(ILs) were prepared and used for Biginelli-type condensation reaction among aromatic aldehydes, urea or thiourea and cyclopentanone. Through this reaction, the synthesis of various pyrimidinones could be achieved. Of interest, it was found that the reaction was efficiently catalyzed by a novel, eco-friendly functionalized IL [C3SO3HDoim]HSO4, which could be reused for at least 7 times without significantly loss of catalytic activity. The reaction proceeded efficiently at 80℃ to afford the desired products in good yield(up to 96%). In addition, a possible mechanism that accounted for the IL [C3SO3HDoim]HSO4-catalyzed reaction was proposed.展开更多
In this study,cyclohexene was used as a representative of olefin and catalyzed by CeY zeolites in a fixedbed reactor under mild conditions,and the influence of Ce species in hydride transfer reaction over CeY zeolites...In this study,cyclohexene was used as a representative of olefin and catalyzed by CeY zeolites in a fixedbed reactor under mild conditions,and the influence of Ce species in hydride transfer reaction over CeY zeolites was evaluated.CeY zeolites show more excellent hydride transfer properties than HY zeolite.Based on the results of almost identical Bronsted acid properties but not the product distributions for 0.075 CeY and 0.075 CeY(DC)samples,it should be suggested that the Bronsted acid strength and density are not the deciding factors to the hydride transfer reaction.A unique band at 1442 cm^-1 in situ FTIR spectroscopy spectra are assigned to pyridine complexes bonded to a class of active Ce species that could reversibly migrate from the core of SOD cages to its 6-rings mouth towards the supercages.These results provide valuable information that these active Ce species should play a synergistic role with the Bronsted acid sites in enhancing the hydride transfer reaction with a bimolecular mechanism over CeY zeolites.展开更多
Some oxindoles derivatives are synthesized from the condensation of indoles with isatins in the presence of green and recycable catalyst [(CH2)4SO3HMIM] [HSO4] in water at room temperature.
A shelf-stable gem-difluorinated reagent β-tosyloxy-γ,γ-difluroallylboronic acid pinacol ester has been prepared, which can be easily used for the preparation of gem-difluorinated homoallylic alcohols through Brons...A shelf-stable gem-difluorinated reagent β-tosyloxy-γ,γ-difluroallylboronic acid pinacol ester has been prepared, which can be easily used for the preparation of gem-difluorinated homoallylic alcohols through Bronsted acid (PhCO2H) catalyzed gem-difluoroallylation of aldehydes and ketone.展开更多
基金supported by the National Natural Science Foundation of China(21473225)
文摘Olefin oligomerization reaction catalyzed by new catalyst systems(a Br?nsted‐acidic ionic liquid as the main catalyst and tricaprylylmethylammonium chloride as the co‐catalyst) has been investigat‐ed. The synthesized Br?nsted acidic ionic liquids were characterized by Fourier transform infrared spectroscopy(FT‐IR), ultraviolet‐visible spectroscopy(UV), ^1H nuclear magnetic resonance(NMR), and ^13 C NMR to analyze their structures and acidities. The influence of different ionic liquids, ionic liquid loading, different co‐catalysts, catalyst ratios(mole ratio of ionic liquid to co‐catalyst), reac‐tion time, pressure, temperature, solvent, source of reactants, and the recycling of catalyst systems was studied. Among the synthesized ionic liquids, 1‐(4‐sulfonic acid)butyl‐3‐hexylimidazolium hydrogen sulfate([HIMBs]HSO4) exhibited the best catalytic activity under the tested reaction con‐ditions. The conversion of isobutene and selectivity of trimers were 83.21% and 35.80%, respec‐tively, at the optimum reaction conditions. Furthermore, the catalyst system can be easily separated and reused; a feasible reaction mechanism is proposed on the basis of the distribution of experi‐mental products.
基金Supported by the National Natural Science Foundation of China(21576053,91534106,21306025)the International S&T Cooperation Program of China(2013DFR90540)+3 种基金the Science Foundation of Distinguished Young Scholars of Fujian(2014J06004)the New Century Excellent Talents in Fujian Province University(JA12014)the Natural Science Foundation of Fujian Province(2016J01689)the Key Project of Fujian Provincial Department of Science and Technology(2014Y0066)
文摘Five Br?nsted acidic ionic liquids(ILs) were prepared and characterized by FT-IR,~1H NMR and ^(13)C NMR. Their catalytic activities for the synthesis of 2-propanol(IPOH) via transesterification of isopropyl acetate(IPAc) with methanol(Me OH) were investigated. Among all the tested ILs, [Ps-mim]HSO_4 performed best and was used as catalyst for further studies. The reaction kinetics were carried out to correlate the parameters in a homogeneous second order kinetic model. It has been found that there is close agreement between the calculated and experimental values. The high-pressure batch reactive distillation experimental apparatus was set up in order to enhance the conversion of IPAc. A high conversion of IPAc of 99.4% was obtained under the optimal reaction conditions. The catalyst [Ps-mim]HSO_4 can be recycled easily by a rotary evaporator and reused without any further treatment. The catalyst had been repeatedly used for four times and no obvious changes in the structure of catalyst could be observed.
基金Supported by National Natural Science Foundation of China(No.20576026)Environmental Engineering Key Subject of He-bei Province,China.
文摘A series of condensation reactions of unmodified ketones and aromatic aldehydes to prepare α,β-unsaturated carbonyl compounds by means of Aldol reactions in Bronsted acid ionic liquids(BAILs)was explored.1-Butyl-3-methylimidazolium hydrogen sulphate(BMImHSO4)acting as an effective media and catalyst in aldol reactions was compared with other BAILs,with the advantages of high conversion and selectivity.The product was easily isolated and the left ionic liquid can be readily recovered and reused at least 3 times with almost the same efficiency.The scope and limitation of the present method were explored and the possible catalytic mechanism was speculated.
文摘Beckmann rearrangements of oximes to lactams often require harsh conditions and/or the use of large amounts of acid catalyst. To reduce the amount of Bronsted acid required, and to avoid the formation of a large amount of undesirable byproducts under mild reaction conditions, a low environmental load process was developed. Beckmann rearrangements of cyclohexanone oxime and cyclooctanone oxime were achieved using a combination of a Bronsted acid and cobalt tetra-fluoroborate hexahydrate. Various Bronsted acid catalysts (10 - 20 mol%) were used to obtain the corresponding lactams in high yields at 80℃.
基金We greatly appreciate the financial support from the National Key Research and Development Program of China(No.2022YFC3205300)the National Natural Science Foundation of China(No.22122604).
文摘Despite the development of various Lewis acidic nano-adsorbents for fluoride removal through innersphere coordination,strong competition for hydroxyl ions still hinders efficient water defluoridation.In addition,the critical issue of polysilicate scaling that results from the ubiquitous silicates must be addressed.To tackle these issues,an alternative approach to enhancing adsorption reactivity by modifying nano-adsorbents with dual Lewis and Bronsted acidity is proposed.The feasibility of this approach is demonstrated by growing zirconium phosphate(ZrP)inside a gel-type anion exchanger,N201,to produce nanocomposite ZrP@N201,in which the confined ZrP contained an otherwise metastable amorphous phase with Lewis acidic Zr^(4+) sites and Bronsted acidic monohydrogen phosphate groups(-O_(3)POH).Compared with the Lewis acidic nano-zirconium oxide analog(HZ0@N201),ZrP@N201 exhibited a greatly improved adsorption capacity(117.9 vs.52.3 mg/g-Zr)and mass transfer rate(3.56×10^(-6) vs.4.55×10^(-7) cm/s),while bulk ZrP produced a thermodynamically stableα-phase with Bronsted acidity that exhibited negligible adsorption capability toward fluoride.The enhanced defluoridation activity of ZrP@N201 is attributed to Bronsted acidity and the increased outer electron density of ZA+sites,as corroborated using XPS and solid-state NMR analysis.Moreover,Bronsted acidity strengthens the resistance of ZrP@N201 to silicate,allowing its full regeneration during cyclic defluoridation.Column tests demonstrated 3-10 times the amount of clean water from(waste)for ZrP@N201 as compared to both HZO@N201 and the widely used activated aluminum oxide.This study highlights the potential of developing nano-adsorbents with dual acidities for various environmental remediation applications.
文摘A series of Bronsted acidic ionic liquids(ILs) were prepared and used for Biginelli-type condensation reaction among aromatic aldehydes, urea or thiourea and cyclopentanone. Through this reaction, the synthesis of various pyrimidinones could be achieved. Of interest, it was found that the reaction was efficiently catalyzed by a novel, eco-friendly functionalized IL [C3SO3HDoim]HSO4, which could be reused for at least 7 times without significantly loss of catalytic activity. The reaction proceeded efficiently at 80℃ to afford the desired products in good yield(up to 96%). In addition, a possible mechanism that accounted for the IL [C3SO3HDoim]HSO4-catalyzed reaction was proposed.
基金Project supported by the National Natural Science Foundation of China(21902068,U1662135)PetroChina Company Limited(KYWX-18-011)Scientific Research Project of Education Department of Liaoning Province(L2019035)。
文摘In this study,cyclohexene was used as a representative of olefin and catalyzed by CeY zeolites in a fixedbed reactor under mild conditions,and the influence of Ce species in hydride transfer reaction over CeY zeolites was evaluated.CeY zeolites show more excellent hydride transfer properties than HY zeolite.Based on the results of almost identical Bronsted acid properties but not the product distributions for 0.075 CeY and 0.075 CeY(DC)samples,it should be suggested that the Bronsted acid strength and density are not the deciding factors to the hydride transfer reaction.A unique band at 1442 cm^-1 in situ FTIR spectroscopy spectra are assigned to pyridine complexes bonded to a class of active Ce species that could reversibly migrate from the core of SOD cages to its 6-rings mouth towards the supercages.These results provide valuable information that these active Ce species should play a synergistic role with the Bronsted acid sites in enhancing the hydride transfer reaction with a bimolecular mechanism over CeY zeolites.
文摘Some oxindoles derivatives are synthesized from the condensation of indoles with isatins in the presence of green and recycable catalyst [(CH2)4SO3HMIM] [HSO4] in water at room temperature.
文摘A shelf-stable gem-difluorinated reagent β-tosyloxy-γ,γ-difluroallylboronic acid pinacol ester has been prepared, which can be easily used for the preparation of gem-difluorinated homoallylic alcohols through Bronsted acid (PhCO2H) catalyzed gem-difluoroallylation of aldehydes and ketone.