The preharvest internal browning of Nane plum fruit,with no visible effects on the appearance of the fruit,has become a serious problem in recent years in its production area in Guangdong Province,China.This study inv...The preharvest internal browning of Nane plum fruit,with no visible effects on the appearance of the fruit,has become a serious problem in recent years in its production area in Guangdong Province,China.This study investigated the effects of environmental factors,including temperature,on Nane plum internal browning.Plum orchards at different elevations with different incidences of internal browning were selected.Using fruits with different internal browning incidence levels,the internal browning mechanism was analyzed with transcriptome and metabolome analyses.The results revealed decreased internal browning at high altitudes.Shading treatment significantly reduced internal browning,whereas bagging and insect-proof net-covering treatments significantly increased internal browning.Because bagging and net coverings increase the local ambient temperature,the findings suggest that high temperature is an important factor influencing the internal browning of Nane plum.The metabolome experiments showed that with increased internal browning,the levels of phenolic hydroxyls such as catechol increased,with simultaneous increases in hydrogen peroxide content and oxidase activity.It can be speculated that the oxidation of phenolic hydroxyl substances is the main cause of the preharvest browning of Nane plum.Transcriptome analysis revealed the increased expression of calcium signaling-related and downstream effector genes and indicated an important role of calcium in internal browning,possibly due to its increased content in the fruit.Further,with increasingly serious internal browning,genes related to photosynthesis were down-regulated,while genes related to senescence were up-regulated,thus suggesting the up-regulation of the process of cell senescence during internal browning.In conclusion,heat stress should be eliminated to reduce preharvest internal browning in Nane plum.展开更多
Apples are one of the most important economic crops worldwide.Because of global warming and an aggravation of environmental,abnormally high temperatures occur frequently in fruit-growing season and seriously affect no...Apples are one of the most important economic crops worldwide.Because of global warming and an aggravation of environmental,abnormally high temperatures occur frequently in fruit-growing season and seriously affect normal fruit growth and reduce fruit quality and yield.We took five-year-old Ruixue’(Qinfu 1×Pink Lady;CNA20151469.1) fruits as test materials,and the ambient temperature during fruit development was monitored.The results showed that during the fruit-growing season,especially during the rapid growth stage (July to August),the maximum daily temperature exceeded 30℃ and lasted for more than 40 days.To determine the effects of high temperature stress on the apple fruit resistance,we treated expanding,veraison,and maturity-period fruits at different temperatures.It was found that the fruits of the expanding period showed strong resistance to high temperature stress,whereas during veraison and maturity,fruit resistance to high temperature stress decreased,and the fruit peel browning phenotype appeared.Meanwhile,the content of malonaldehyde (MDA),hydrogen peroxide (H_(2)O_(2)),and superoxide anion (O._(2)^(-)) in the peel gradually increased with increasing temperature.The content of total phenols,flavanol,and flavonoids in the peel decreased substantially at 45℃.Moreover,it was found that polyphenol oxidase gene (MdPPO1) was most sensitive to high temperature stress in apple.Furthermore,transient and stable MdPPO1 overexpression significantly promoted peel browning.The transgenic materials were more sensitive to high temperatures,and browning was more severe compared to non-genetically modified organism (WT).Stable MdPPO1 knockout calli obtained via clustered regularly interspersed short palindromic repeats (CRISPR/Cas9) gene knockout technology reduced the browning phenotype,and the resultant fruits were not sensitive to the effects of high temperature stress.Thus,MdPPO1 expression may be a key factor of high temperature-related changes observed in the browning phenotype that provides a scientific theoretical basis for the selection of high temperature-resistant varieties and apple cultivation and management in the future.展开更多
The compaction characteristics of gravelly soil are affected by gravel hardness.To investigate the evolution and influencing mechanism of different gravel hardness on the compaction characteristics of gravelly soil,he...The compaction characteristics of gravelly soil are affected by gravel hardness.To investigate the evolution and influencing mechanism of different gravel hardness on the compaction characteristics of gravelly soil,heavy compaction tests and crushing tests were conducted on gravelly soils with gravels originated from hard,soft and extremely soft rocks.According to orthogonal experiments and variance analysis,it was found that hardness has a significant impact on the maximum dry density of gravelly soil,followed by gravel content,and lastly,moisture content.For gravel compositions with an average saturated uniaxial compressive strength less than 60 MPa,the order of compacted maximum dry density is soft gravels>hard gravels>extremely soft gravels.Each type of gravelly soil has a threshold for gravel content,with 60%for hard and soft gravels and 50%for extremely soft gravels.Beyond these thresholds,the compacted dry density decreases significantly.There is a certain interaction between hardness,gravel content,and moisture content.Higher hardness increases the influence of gravel content,whereas lower hardness increases the influence of moisture content.Gravelly soils with the coarse aggregate(CA)between 0.7 and 0.8 typically achieve higher dry densities after compaction.In addition,the prediction equations for the particle breakage rate and CA ratio in the Bailey method were proposed to estimate the compaction performance of gravelly soil preliminarily.The results further revealed the compaction mechanism of different gravelly soils and can provide reference for subgrade filling construction.展开更多
The welding interface is crucial to the service safety of dissimilar metal weld(DMW)joints between stainless steel(SS)and low alloy(LA)steel.Different status of welding interfaces was prepared by cladding SS consumabl...The welding interface is crucial to the service safety of dissimilar metal weld(DMW)joints between stainless steel(SS)and low alloy(LA)steel.Different status of welding interfaces was prepared by cladding SS consumables to LA steel substrates with different heat inputs via tungsten inert gas arc welding(TIG),followed by a series of microstructural characterizations and hardness tests.Results showed that a hardening and transition layer(TL)would be generated along the welding interface,and the width and hardening degree of the TL would increase with the heat input.Meanwhile,heavy load hardness tests showed that highly severe inhomogeneous plastic deformation and the microcrack would be generated in the interfacial region and the welding interface respectively in the highest heat input sample(1.03 kJ/mm).These results indicate that the increase in heat input would deteriorate the bonding performance of DMW joints.Further microstructural observations showed that the higher hardening degree of the highest heat input sample was mainly attributed to the stronger grain boundary,solution,and dislocation strengthening effects.展开更多
As an ekphrastic poem re-created from the painting Coronation of the Virgin,“Fra Lippo Lippi”lacks adequate scrutiny from the perspective of interart poetics.With regards to the core concept of ekphrasis,this paper ...As an ekphrastic poem re-created from the painting Coronation of the Virgin,“Fra Lippo Lippi”lacks adequate scrutiny from the perspective of interart poetics.With regards to the core concept of ekphrasis,this paper makes an in-depth analysis of the features and functions of ekphrasis in the poem.The former lie in the poet’s identification with the painter,and his imaginative supplementation in“the verbal representation of visual representation”.The latter are embodied in the revelation of the invisible in the painting,namely,the desires and value of human beings,as well as the power of beauty and truth.Browning enriches the poem with both philosophical and artistic contemplation,thus strongly conveying the thematic implications of“know thyself”and the persistent pursuit of beauty and truth.It is hoped that this study can shed some light on the studies of Robert Browning and the poem itself,and contribute to the development of the interart poetics.展开更多
For joining high Cr,Ni and Mo austenitic stainless steel(AISI 316)by direct drive friction welding(DDFW),with friction weld-ing conditions:rotation speed of 3000 r/min,friction time of 10 s,friction pressure of 130 MP...For joining high Cr,Ni and Mo austenitic stainless steel(AISI 316)by direct drive friction welding(DDFW),with friction weld-ing conditions:rotation speed of 3000 r/min,friction time of 10 s,friction pressure of 130 MPa,forge time of 5 s and forge pressure of 260 MPa.The results of microstructure showed that the temperature at the interface reached 819℃while forge applied between 357-237℃,which subdivided welded joint into four distinct regions of highly plastically deformed zone(HPDZ),thermo-mechanically affected zone(TMAZ),heat affected zone(HAZ)and the base metal,with grain size about 10µm,100µm,90µm and 30µm respectively.These re-gions were created due to dynamic recrystallization(DRX)at the interface and thermo-mechanical deformation with heat diffusion in the neighboring regions.Whereas,high level of microhardness about 300 HV0.1 and hardness roughly 240 Hv10 at the interface due to HPDZ creation while low level of 240 HV0.1 for microhardness and moderately of 205 HV10 for hardness in neighboring regions.展开更多
The hardening on surface of complex profles such as thread and spline manufactured by cold rolling can efectively improve the mechanical properties and surface quality of rolled parts. The distribution of hardness in ...The hardening on surface of complex profles such as thread and spline manufactured by cold rolling can efectively improve the mechanical properties and surface quality of rolled parts. The distribution of hardness in superfcial layer is closely related to the deformation by rolling. To establish the suitable correlation model for describing the relationship between strain and hardness during cold rolling forming process of complex profles is helpful to the optimization of rolling parameters and improvement of rolling process. In this study, a physical analog experiment refecting the uneven deformation during complex-profle rolling process has been extracted and designed, and then the large date set (more than 400 data points) of training samples refecting the local deformation characteristics of complexprofle rolling have been obtained. Several types of polynomials and power functions were adopted in regression analysis, and the regression correlation models of 45# steel were evaluated by the single-pass and multi-pass physical analog experiments and the complex-profle rolling experiment. The results indicated that the predicting accuracy of polynomial regression model is better in the strain range (i.e., ε < 1.2) of training samples, and the correlation relationship between strain and hardness out strain range (i.e., ε > 1.2) of training samples can be well described by power regression model;so the correlation relationship between strain and hardness during complex-profle rolling process of 45# steel can be characterized by a segmented function such as third-order polynomial in the range ε < 1.2 and power function with a ftting constant in the range ε > 1.2;and the predicting error of the regression model by segmented function is less than 10%.展开更多
Background:Nutrient regulation has been proven to be an effective way to improve the flesh quality in fish.As a necessary nutrient for fish growth,protein accounts for the highest proportion in the fish diet and is ex...Background:Nutrient regulation has been proven to be an effective way to improve the flesh quality in fish.As a necessary nutrient for fish growth,protein accounts for the highest proportion in the fish diet and is expensive.Although our team found that the effect of protein on the muscle hardness of grass carp was probably related to an increased collagen content,the mechanism for this effect has not been deeply explored.Moreover,few studies have explored the protein requirements of sub-adult grass crap(Ctenopharyngodon idella).Therefore,the effects of different dietary protein levels on the growth performance,nutritional value,muscle hardness,muscle fiber growth,collagen metabolism and related molecule expression in grass carp were investigated.Methods:A total of 450 healthy grass carp(721.16±1.98 g)were selected and assigned randomly to six experimen-tal groups with three replicates each(n=25/replicate),and were fed six diets with 15.91%,19.39%,22.10%,25.59%,28.53%and 31.42%protein for 60 d.Results:Appropriate levels of dietary protein increased the feed intake,percentage weight gain,specific growth rate,body composition,unsaturated fatty acid content in muscle,partial free amino acid content in muscle,and muscle hardness of grass carp.These protein levels also increased the muscle fiber density,the frequency of new muscle fibers,the contents of collagen and IGF-1,and the enzyme activities of prolyl 4-hydroxylases and lysyloxidase,and decreased the activity of matrix metalloproteinase-2.At the molecular level,the optimal dietary protein increased col-lagen type Iα1(Colα1),Colα2,PI3K,Akt,S6K1,La ribonucleoprotein domain family member 6a(LARP6a),TGF-β1,Smad2,Smad4,Smad3,tissue inhibitor of metalloproteinase-2,MyoD,Myf5,MyoG and MyHC relative mRNA levels.The levels of the myostatin-1 and myostatin-2 genes were downregulated,and the protein expression levels of p-Smad2,Smad2,Smad4,p-Akt,Akt,LARP6 and Smad3 were increased.Conclusions:The appropriate levels of dietary protein promoted the growth of sub-adult grass carp and improved muscle hardness by promoting the growth of muscle fibers,improving collagen synthesis and depressing collagen degradation.In addition,the dietary protein requirements of sub-adult grass carp were 26.21%and 24.85%according to the quadratic regression analysis of growth performance(SGR)and the muscle hardness(collagen content),respectively.展开更多
Cu-Ni-Sn spinodal alloys(Spinodal bronze)are potential materials with robust applications in components associated with defence applications like bearings,propellers,bushes,and shafts of heavily loaded aircraft,off-ro...Cu-Ni-Sn spinodal alloys(Spinodal bronze)are potential materials with robust applications in components associated with defence applications like bearings,propellers,bushes,and shafts of heavily loaded aircraft,off-road vehicles,and warships.This paper presents a comparative study using water,Brine solution,and SAE 40 oil as the quenching media in regular bronze(Cu-6Sn)and spinodal bronze(Cu-9Ni-6Sn)alloys.Morphological analysis was conducted by optical microscopy,transmission electron microscopy(TEM),and X-ray diffraction technique(XRD)on bronze and spinodal bronze samples immersed in the three different quenching media to understand the grain size and hardness values better.Tribological analysis was performed to analyze the effect of quenching media on the wear aspects of bronze and spinodal bronze samples.The hardness value of the brine-aged spinodal bronze samples was as high as 320 Hv,and the grain size was very low in the range of 60μm.A quantitative comparison between brine-aged regular bronze and brine-aged spinodal bronze showed that the hardness(Hv)was almost 80%higher for brine-aged spinodal bronze.Further,the grain size was approximately 30%finer for spinodal bronze when compared with regular bronze.When the load was increased in spinodal bronze samples,there was an initial dip in wear rate followed by a marginal increase.There was a steady increase in friction coefficient with a rise in load for brine-aged regular bronze and spinodal bronze samples.These results indicate that brine solution is the most effective quenching medium for cast Cu-Ni-Sn spinodal alloys.展开更多
Gingko biloba accumulates high levels of secondary metabolites of pharmaceutical value.Ginkgo calli develop a typical browning that reduces its regenerative capacity and thus its usefulness.To elucidate the browning m...Gingko biloba accumulates high levels of secondary metabolites of pharmaceutical value.Ginkgo calli develop a typical browning that reduces its regenerative capacity and thus its usefulness.To elucidate the browning mechanism,histological,transcriptomic,and metabolic alterations were compared between green and browning calli derived from immature ginkgo embryos.Histological observations revealed that browning calli had a more loosely arranged cell structure and accumulated more tannins than in green calli.Integrated metabolic and transcriptomic analyses showed that phenylpropanoid metabolism was specifi-cally activated in the browning calli,and 428 diff erentially expressed genes and 63 diff erentially abundant metabolites,including 12 fl avonoid compounds,were identifi ed in the browning calli compared to the green calli.Moreover,the expression of fl avonol synthase(FLS)and UDP-glucuronosyl-transferase(UGT)genes involved in the fl avonoid pathway was more than tenfold higher in browning calli than in green calli,thus promoting biosynthesis of fl avonol,which serves as a substrate to form glycosylated fl avonoids.Flavonoid glycosides constituted the major coloring component of the browning calli and may act in response to multiple stress conditions to delay cell death caused by browning.Our results revealed the cellular and biochemical changes in browning callus cells that accompanied changes in expression of browning-related genes,providing a scientifi c basis for improving ginkgo tissue culturability.展开更多
Potato(Solanum tuberosum L.)is susceptible to enzymatic browning after fresh processing,resulting in color change and potential alteration in the nutritional quality.In this study,a popular potato cultivar,Feiwuruita,...Potato(Solanum tuberosum L.)is susceptible to enzymatic browning after fresh processing,resulting in color change and potential alteration in the nutritional quality.In this study,a popular potato cultivar,Feiwuruita,was used to profile the metabolites involved in color and nutritional quality changes in fresh shreds stored at 0 and 4 h at 25°C(designated CK and CK4H,respectively).The shreds turned brown within 4 h of storage.In all,723 metabolites consisting 12 classes of compounds were detected in the samples,largely lipids,phenolic acids,alkaloids,amino acids and derivatives,flavonoids,organic acids,nucleotides and derivatives.Of these,163 metabolites accumulated differentially between CK and CK4H shreds.Polyphenolic compounds(phenolic acids and flavonoids)mostly increased in the shreds after 4 h storage.Conversely,the short-term storage drastically reduced lipid compounds(25 LysoPC and 19 LysoPE),while essential alkaloids and terpenoid compounds that are beneficial to human health increased in accumulation.The findings present global metabolome and nutritional composition changes in short-term stored shreds of Feiwuruita.This study provides important foundation for future studies on browning prevention/reduction and for better utilization of Feiwuruita.展开更多
Obesity-induced type 2 diabetes is mainly due to excessive free fatty acids leading to insulin resistance.Increasing thermogenesis is regarded as an effective strategy for hypolipidemia and hypoglycemia.Ginsenoside is...Obesity-induced type 2 diabetes is mainly due to excessive free fatty acids leading to insulin resistance.Increasing thermogenesis is regarded as an effective strategy for hypolipidemia and hypoglycemia.Ginsenoside is a natural active component in Panax ginseng C.A.Meyer,and some of them enhance thermogenesis.However,there are few studies on the mechanism and target of ginsenosides enhancing thermogenesis.Using thermogenic protein uncoupling protein 1(UCP1)-luciferase reporter assay,we identifi ed ginsenoside F1 as a novel UCP1 activator in the ginsenosides library.Using pull down assay and inhibitor interference,we found F1 binds toβ3-adrenergic receptors(β3-AR)to enhance UCP1 expression via cAMP/PKA/CREB pathway.We also investigated the ability of F1 on energy metabolism in obesity-induced diabetic mice,including body weight,body composition and energy expenditure.The results of proteomics showed that F1 signifi cantly up-regulated thermogenesis proteins and lipolytic proteins,but down-regulated fatty acid synthesis proteins.Ginsenoside F1 increased thermogenesis and ameliorated insulin resistance specifi cally by promoting the browning of white adipose tissue in obese mice.Additionally,ginsenoside F1 improves norepinephrine-induced insulin resistance in adipocytes and hepatocytes,and shows a stronger mitochondria respiration ability than norepinephrine.These fi ndings suggest that ginsenoside F1 is a promising lead compound in the improvement of insulin resistance.展开更多
DSA(dynamic strain aging)phenomenon in SUS316 steel was investigated using isothermal and non-isothermal tensile tests of simulated HAZ(heat-affected zone)thermal cycles.Isothermal tensile tests were performed on SUS3...DSA(dynamic strain aging)phenomenon in SUS316 steel was investigated using isothermal and non-isothermal tensile tests of simulated HAZ(heat-affected zone)thermal cycles.Isothermal tensile tests were performed on SUS316 in the peak temperature range of 20-700°C,with strain rates varying from 4.2×10^(-3)to 4.2×10^(-5)s^(-1).Based on the appearance of discontinuous plastic flows,expressed as serrations,and the hardening phenomenon of the tensile samples,the conditions for the occurrence of DSA in the SUS316 steel were investigated.Furthermore,the extent of hardening due to DSA was evaluated by comparing the hardness values of the SUS316 and SUS316EHP steels after the tensile tests.To confirm the effect of DSA on hardness in the HAZ of the welded SUS316 steel,non-isothermal tensile tests of the simulated HAZ thermal cycles were performed using a Thermec Master.The relationship between the increase in Vickers hardness due to DSA and the strain in the HAZ was determined;the effect of DSA on hardness in the HAZ could be predicted.The DSA in SUS316 steel was found to be mainly attributed to the dynamic interaction of dislocations with C and N interstitial atoms during high-temperature deformation.展开更多
Internal browning(IB),a major physiological disorder of pineapples,usually happens in postharvest processes,but the underlying mechanism remains elusive.The bHLH transcription factors are involved in regulating variou...Internal browning(IB),a major physiological disorder of pineapples,usually happens in postharvest processes,but the underlying mechanism remains elusive.The bHLH transcription factors are involved in regulating various biological processes,but whether they could regulate tissue browning in fruit during storage remains unknown.Here we showed that the phenolic biosynthesis pathway was activated in pineapples showing IB following 9 days of storage.AcbHLH144 expression was the highest of the 180 transcription factors identified,downregulated in pineapple with IB,and negatively correlated with the major phenolic biosynthetic genes.AcbHLH144 was shown to be localized in the nucleus and its transient overexpression in pineapples and overexpression in Arabidopsis decreased phenolic biosynthesis.The yeast one-hybrid assay and electrophoretic mobility shift assay showed that AcbHLH144 directly bound to the Ac4CL5 promoter and the dual-luciferase reporter assay showed that it inactivated Ac4CL5 transcription.These results strongly suggest AcbHLH144 as a repressor for phenolic biosynthesis.Abscisic acid(ABA)alleviated IB,reduced phenolic accumulation,and downregulated phenolic biosynthetic genes,including Ac4CL5.Transcriptomic analysis showed that AcbHLH144 was the most upregulated of all 39 bHLHs in response to ABA.ABA enhanced AcbHLH144 expression,reduced phenolic contents,and downregulated phenolic biosynthetic genes in pineapples transiently overexpressing AcbHLH144.Moreover,ABA enhanced enzyme activity of GUS driven by the AcbHLH144 promoter.These results showed that AcbHLH144 as a repressor for phenolic biosynthesis could be activated by ABA.Collectively,the work demonstrated that AcbHLH144 negatively regulated phenolic biosynthesis via inactivating Ac4CL5 transcription to modulate pineapple IB.The findings provide novel insight into the role of AcbHLH144 in modulating pineapple IB during postharvest processes.展开更多
Effects of Cr3C2,VC and La2O3 additions on the WC grain morphology,hardness and toughness of WC-10Co alloys were investigated.To intensify the grain growth driving force,nano W and nano C,instead of the conventionally...Effects of Cr3C2,VC and La2O3 additions on the WC grain morphology,hardness and toughness of WC-10Co alloys were investigated.To intensify the grain growth driving force,nano W and nano C,instead of the conventionally used WC,were used as the starting materials.To obtain a three-dimensional WC grain morphology,the natural sinter skins of the alloys were observed directly by scanning electron microscopy.It is shown that the additions have a strong ability in regulating the WC grain morphological and grain size distribution characteristics and the combinations of hardness and toughness.Due to the formation of regular and homogeneous triangular platelet WC grains,WC-10Co-0.6Cr3C2-0.06La2O3 alloy shows an excellent combination of hardness and toughness.The morphological regulation mechanism,the relationship between the WC grain morphology and the properties were discussed.展开更多
The microstructure and hardness of the stir zone (SZ) with different welding heat inputs were investigated for friction stir-welded 2024-T3 aluminum by transmission electron microscopy, differential scanning calorim...The microstructure and hardness of the stir zone (SZ) with different welding heat inputs were investigated for friction stir-welded 2024-T3 aluminum by transmission electron microscopy, differential scanning calorimeter and Vickers micro-hardness test. The results show that welding heat input has a significant effect on the hardness of the SZ. Under high welding heat input condition, a higher welding speed is beneficial for improving the hardness of the SZ. However, when the welding heat input is low, the hardness of the SZ elevates with increasing the rotation speed. The hardness of the SZ decreases after post-welded heat treatment due to overaging. The joints welded at 500 r/min and 100 mm/min show a high resistance to overaging. The reduction of hardness in the SZ is only 3.8%, while in other joints, the reduction is more than 10%. The morphology of strengthening precipitates plays important roles for the improvement of hardness.展开更多
[Objective] Pericarp browning in the postharvest litchi significantly reduced its commercial value and limited the expanding of litchi markets. Physiological changes during the process of pericarp browning were determ...[Objective] Pericarp browning in the postharvest litchi significantly reduced its commercial value and limited the expanding of litchi markets. Physiological changes during the process of pericarp browning were determined in order to identify the underlying mechanisms. [Method] Matured Feizixiao fruits were stored at 25 ℃ and 70%±5% relative humidity. The physiological changes happened in pericarp during storage were tested at an 8-hour interval. [Result] The fruit of Feizixiao (Litchi chinensis Sonn. cv Feizixiao) turned completely brown within 72 h after being harvested under the experimental conditions. Sharp increase of the browning index occurred from 48 to 64 hours after harvest (HAH). With the browning of pericarp,water content of the whole fruit and pericarp decreased continuingly. In contrast,there were no significant changes in the water content of pulp during the same period. MDA content,pH value and relative leakage rate of pericarp were increased during storage. Most of pigment contents including anthocyanin,flavonoid,phenols,chlorophyll a and total chlorophyll decreased. POD activity was initially increased in 32 HAH and then decreased afterwards. PPO activity was decreased continuously,while the activities of catalase and superoxide dismutase exhibited the pattern of 'increasing-decreasing-increasing' as the storage time progressed. Correlation,stepwise regression and path analyses showed that water loss of pericarp was the major factor of pericarp browning. Principal and cluster analyses showed that there were two stages of pericarp browning during the course of litchi storage. [Conclusion] Water status of pericarp was the most important factor affecting pericarp browning. The pericarp browning happened by stages,which was mainly determined by the water loss of pericarp.展开更多
[Objective] This study aimed to investigate the browning of T. cuspidata cells in suspension culture and provide the guidance for the cell suspension culture of T. cuspidata. [Method] T. cuspidata callus was used as e...[Objective] This study aimed to investigate the browning of T. cuspidata cells in suspension culture and provide the guidance for the cell suspension culture of T. cuspidata. [Method] T. cuspidata callus was used as experimental materials, to explore the effect of different medium, N/P ratio, pH, shaking speed, illumination time and light intensity and other factors on browning of T. cuspidata cells in suspension culture. [Result] Non-browning callus was transferred to 2MB5 medium (pH 7.0) for illumination culture at 22℃ under light intensity of 1 500 lx with shaking speed of 90 r/min for 24 h. Results showed that the cell browning was significantly inhibited. [Conclusion] This study laid the foundation for cell suspension culture of T. cuspidata and had important significance to the large-scale industrial production of paclitaxel.展开更多
H-gate and closed-gate PD SOI nMOSFETs are fabricated on SIMOX substrate,and the influence of floating body effect on the radiation hardness is studied.All the subthreshold characteristics of the devices do not change...H-gate and closed-gate PD SOI nMOSFETs are fabricated on SIMOX substrate,and the influence of floating body effect on the radiation hardness is studied.All the subthreshold characteristics of the devices do not change much after radiation of the total dose of 106rad(Si).The back gate threshold voltage shift of closed-gate is about 33% less than that of H-gate device.The reason should be that the body potential of the closed-gate device is raised due to impact ionization,and an electric field is produced across the BOX.The floating body effect can improve the radiation hardness of the back gate transistor.展开更多
The hardness values and the wear resistance of Al2O3P/ Zn-Al composite, prepared by means of rheological casting technology,are investigated separately in this work. The results show that the addition of Al2O3P increa...The hardness values and the wear resistance of Al2O3P/ Zn-Al composite, prepared by means of rheological casting technology,are investigated separately in this work. The results show that the addition of Al2O3P increases the hardness values of the matrix at both room and high temperature and improves the wear resistance of the material.The hardness values and the wear resistance of the composite rise with the increase of the particle volume fraction or the decrease of the particle size.The raising of test temperature results in a rapid descending of its hardness values.However, the addition of Al2O3P improves the property of high temperature resistance of Zn-Al alloys significantly.Moreover,the effect of quenching, tempering or cycling heat treatment on the hardness values of the composite is also studied.展开更多
基金the financial support from the Guangdong Provincial Agricultural Science and Technology Development and Resource Environmental Protection Management Project(Grant No.2022KJ116)the Guangdong Provincial Modern Agricultural Industrial Park Project of Lechang city Lingnan deciduous fruit(LCTJ2020078CS)+1 种基金Guangdong Provincial,Operation and maintenance project of germplasm resource nursery of deciduous fruit trees(Grant No.2022-NBH-00-010)Guangdong Province rural science and technology special correspondent project(Grant No.KTP-20210162).
文摘The preharvest internal browning of Nane plum fruit,with no visible effects on the appearance of the fruit,has become a serious problem in recent years in its production area in Guangdong Province,China.This study investigated the effects of environmental factors,including temperature,on Nane plum internal browning.Plum orchards at different elevations with different incidences of internal browning were selected.Using fruits with different internal browning incidence levels,the internal browning mechanism was analyzed with transcriptome and metabolome analyses.The results revealed decreased internal browning at high altitudes.Shading treatment significantly reduced internal browning,whereas bagging and insect-proof net-covering treatments significantly increased internal browning.Because bagging and net coverings increase the local ambient temperature,the findings suggest that high temperature is an important factor influencing the internal browning of Nane plum.The metabolome experiments showed that with increased internal browning,the levels of phenolic hydroxyls such as catechol increased,with simultaneous increases in hydrogen peroxide content and oxidase activity.It can be speculated that the oxidation of phenolic hydroxyl substances is the main cause of the preharvest browning of Nane plum.Transcriptome analysis revealed the increased expression of calcium signaling-related and downstream effector genes and indicated an important role of calcium in internal browning,possibly due to its increased content in the fruit.Further,with increasingly serious internal browning,genes related to photosynthesis were down-regulated,while genes related to senescence were up-regulated,thus suggesting the up-regulation of the process of cell senescence during internal browning.In conclusion,heat stress should be eliminated to reduce preharvest internal browning in Nane plum.
基金supported by China Agriculture Research System of MOF and MARA (Grant No.CARS-27)the Fundamental Research Funds for the Central Universities (Grant No.2452020033)Shaanxi Engineering Research Center of Apple。
文摘Apples are one of the most important economic crops worldwide.Because of global warming and an aggravation of environmental,abnormally high temperatures occur frequently in fruit-growing season and seriously affect normal fruit growth and reduce fruit quality and yield.We took five-year-old Ruixue’(Qinfu 1×Pink Lady;CNA20151469.1) fruits as test materials,and the ambient temperature during fruit development was monitored.The results showed that during the fruit-growing season,especially during the rapid growth stage (July to August),the maximum daily temperature exceeded 30℃ and lasted for more than 40 days.To determine the effects of high temperature stress on the apple fruit resistance,we treated expanding,veraison,and maturity-period fruits at different temperatures.It was found that the fruits of the expanding period showed strong resistance to high temperature stress,whereas during veraison and maturity,fruit resistance to high temperature stress decreased,and the fruit peel browning phenotype appeared.Meanwhile,the content of malonaldehyde (MDA),hydrogen peroxide (H_(2)O_(2)),and superoxide anion (O._(2)^(-)) in the peel gradually increased with increasing temperature.The content of total phenols,flavanol,and flavonoids in the peel decreased substantially at 45℃.Moreover,it was found that polyphenol oxidase gene (MdPPO1) was most sensitive to high temperature stress in apple.Furthermore,transient and stable MdPPO1 overexpression significantly promoted peel browning.The transgenic materials were more sensitive to high temperatures,and browning was more severe compared to non-genetically modified organism (WT).Stable MdPPO1 knockout calli obtained via clustered regularly interspersed short palindromic repeats (CRISPR/Cas9) gene knockout technology reduced the browning phenotype,and the resultant fruits were not sensitive to the effects of high temperature stress.Thus,MdPPO1 expression may be a key factor of high temperature-related changes observed in the browning phenotype that provides a scientific theoretical basis for the selection of high temperature-resistant varieties and apple cultivation and management in the future.
基金supported by the National Natural Science Foundation of China(No.51878127)the Fundamental Research Funds for the Central Universities(N180104013).
文摘The compaction characteristics of gravelly soil are affected by gravel hardness.To investigate the evolution and influencing mechanism of different gravel hardness on the compaction characteristics of gravelly soil,heavy compaction tests and crushing tests were conducted on gravelly soils with gravels originated from hard,soft and extremely soft rocks.According to orthogonal experiments and variance analysis,it was found that hardness has a significant impact on the maximum dry density of gravelly soil,followed by gravel content,and lastly,moisture content.For gravel compositions with an average saturated uniaxial compressive strength less than 60 MPa,the order of compacted maximum dry density is soft gravels>hard gravels>extremely soft gravels.Each type of gravelly soil has a threshold for gravel content,with 60%for hard and soft gravels and 50%for extremely soft gravels.Beyond these thresholds,the compacted dry density decreases significantly.There is a certain interaction between hardness,gravel content,and moisture content.Higher hardness increases the influence of gravel content,whereas lower hardness increases the influence of moisture content.Gravelly soils with the coarse aggregate(CA)between 0.7 and 0.8 typically achieve higher dry densities after compaction.In addition,the prediction equations for the particle breakage rate and CA ratio in the Bailey method were proposed to estimate the compaction performance of gravelly soil preliminarily.The results further revealed the compaction mechanism of different gravelly soils and can provide reference for subgrade filling construction.
文摘The welding interface is crucial to the service safety of dissimilar metal weld(DMW)joints between stainless steel(SS)and low alloy(LA)steel.Different status of welding interfaces was prepared by cladding SS consumables to LA steel substrates with different heat inputs via tungsten inert gas arc welding(TIG),followed by a series of microstructural characterizations and hardness tests.Results showed that a hardening and transition layer(TL)would be generated along the welding interface,and the width and hardening degree of the TL would increase with the heat input.Meanwhile,heavy load hardness tests showed that highly severe inhomogeneous plastic deformation and the microcrack would be generated in the interfacial region and the welding interface respectively in the highest heat input sample(1.03 kJ/mm).These results indicate that the increase in heat input would deteriorate the bonding performance of DMW joints.Further microstructural observations showed that the higher hardening degree of the highest heat input sample was mainly attributed to the stronger grain boundary,solution,and dislocation strengthening effects.
基金this paper is funded by project Funding:Transcultural Art of History(21WYSB003-2024)Chinese Academic Literature Translation&Publishing Project of National Social Science Foundation.
文摘As an ekphrastic poem re-created from the painting Coronation of the Virgin,“Fra Lippo Lippi”lacks adequate scrutiny from the perspective of interart poetics.With regards to the core concept of ekphrasis,this paper makes an in-depth analysis of the features and functions of ekphrasis in the poem.The former lie in the poet’s identification with the painter,and his imaginative supplementation in“the verbal representation of visual representation”.The latter are embodied in the revelation of the invisible in the painting,namely,the desires and value of human beings,as well as the power of beauty and truth.Browning enriches the poem with both philosophical and artistic contemplation,thus strongly conveying the thematic implications of“know thyself”and the persistent pursuit of beauty and truth.It is hoped that this study can shed some light on the studies of Robert Browning and the poem itself,and contribute to the development of the interart poetics.
文摘For joining high Cr,Ni and Mo austenitic stainless steel(AISI 316)by direct drive friction welding(DDFW),with friction weld-ing conditions:rotation speed of 3000 r/min,friction time of 10 s,friction pressure of 130 MPa,forge time of 5 s and forge pressure of 260 MPa.The results of microstructure showed that the temperature at the interface reached 819℃while forge applied between 357-237℃,which subdivided welded joint into four distinct regions of highly plastically deformed zone(HPDZ),thermo-mechanically affected zone(TMAZ),heat affected zone(HAZ)and the base metal,with grain size about 10µm,100µm,90µm and 30µm respectively.These re-gions were created due to dynamic recrystallization(DRX)at the interface and thermo-mechanical deformation with heat diffusion in the neighboring regions.Whereas,high level of microhardness about 300 HV0.1 and hardness roughly 240 Hv10 at the interface due to HPDZ creation while low level of 240 HV0.1 for microhardness and moderately of 205 HV10 for hardness in neighboring regions.
基金Supported by National Natural Science Foundation of China(Grant No.51675415)Key Research and Development Program of Shaanxi,China(Grant No.2021GXLH-Z-049).
文摘The hardening on surface of complex profles such as thread and spline manufactured by cold rolling can efectively improve the mechanical properties and surface quality of rolled parts. The distribution of hardness in superfcial layer is closely related to the deformation by rolling. To establish the suitable correlation model for describing the relationship between strain and hardness during cold rolling forming process of complex profles is helpful to the optimization of rolling parameters and improvement of rolling process. In this study, a physical analog experiment refecting the uneven deformation during complex-profle rolling process has been extracted and designed, and then the large date set (more than 400 data points) of training samples refecting the local deformation characteristics of complexprofle rolling have been obtained. Several types of polynomials and power functions were adopted in regression analysis, and the regression correlation models of 45# steel were evaluated by the single-pass and multi-pass physical analog experiments and the complex-profle rolling experiment. The results indicated that the predicting accuracy of polynomial regression model is better in the strain range (i.e., ε < 1.2) of training samples, and the correlation relationship between strain and hardness out strain range (i.e., ε > 1.2) of training samples can be well described by power regression model;so the correlation relationship between strain and hardness during complex-profle rolling process of 45# steel can be characterized by a segmented function such as third-order polynomial in the range ε < 1.2 and power function with a ftting constant in the range ε > 1.2;and the predicting error of the regression model by segmented function is less than 10%.
基金supported by National Key R&D Program of China(2018YFD0900400,2019YFD0900200)National Natural Science Foundation of China for Outstanding Youth Science Foundation(31922086)+3 种基金National Nature Science Foundation of China(32172988)the Young Top-Notch Talent Support Program of National Ten-Thousand Talents Program,the Earmarked Fund for China Agriculture Research System(CARS-45)Outstanding Talents and Innovative Team of Agricultural Scientific Research(Ministry of Agriculture)Supported by Sichuan Science and Technology Program(2019YFN0036).
文摘Background:Nutrient regulation has been proven to be an effective way to improve the flesh quality in fish.As a necessary nutrient for fish growth,protein accounts for the highest proportion in the fish diet and is expensive.Although our team found that the effect of protein on the muscle hardness of grass carp was probably related to an increased collagen content,the mechanism for this effect has not been deeply explored.Moreover,few studies have explored the protein requirements of sub-adult grass crap(Ctenopharyngodon idella).Therefore,the effects of different dietary protein levels on the growth performance,nutritional value,muscle hardness,muscle fiber growth,collagen metabolism and related molecule expression in grass carp were investigated.Methods:A total of 450 healthy grass carp(721.16±1.98 g)were selected and assigned randomly to six experimen-tal groups with three replicates each(n=25/replicate),and were fed six diets with 15.91%,19.39%,22.10%,25.59%,28.53%and 31.42%protein for 60 d.Results:Appropriate levels of dietary protein increased the feed intake,percentage weight gain,specific growth rate,body composition,unsaturated fatty acid content in muscle,partial free amino acid content in muscle,and muscle hardness of grass carp.These protein levels also increased the muscle fiber density,the frequency of new muscle fibers,the contents of collagen and IGF-1,and the enzyme activities of prolyl 4-hydroxylases and lysyloxidase,and decreased the activity of matrix metalloproteinase-2.At the molecular level,the optimal dietary protein increased col-lagen type Iα1(Colα1),Colα2,PI3K,Akt,S6K1,La ribonucleoprotein domain family member 6a(LARP6a),TGF-β1,Smad2,Smad4,Smad3,tissue inhibitor of metalloproteinase-2,MyoD,Myf5,MyoG and MyHC relative mRNA levels.The levels of the myostatin-1 and myostatin-2 genes were downregulated,and the protein expression levels of p-Smad2,Smad2,Smad4,p-Akt,Akt,LARP6 and Smad3 were increased.Conclusions:The appropriate levels of dietary protein promoted the growth of sub-adult grass carp and improved muscle hardness by promoting the growth of muscle fibers,improving collagen synthesis and depressing collagen degradation.In addition,the dietary protein requirements of sub-adult grass carp were 26.21%and 24.85%according to the quadratic regression analysis of growth performance(SGR)and the muscle hardness(collagen content),respectively.
文摘Cu-Ni-Sn spinodal alloys(Spinodal bronze)are potential materials with robust applications in components associated with defence applications like bearings,propellers,bushes,and shafts of heavily loaded aircraft,off-road vehicles,and warships.This paper presents a comparative study using water,Brine solution,and SAE 40 oil as the quenching media in regular bronze(Cu-6Sn)and spinodal bronze(Cu-9Ni-6Sn)alloys.Morphological analysis was conducted by optical microscopy,transmission electron microscopy(TEM),and X-ray diffraction technique(XRD)on bronze and spinodal bronze samples immersed in the three different quenching media to understand the grain size and hardness values better.Tribological analysis was performed to analyze the effect of quenching media on the wear aspects of bronze and spinodal bronze samples.The hardness value of the brine-aged spinodal bronze samples was as high as 320 Hv,and the grain size was very low in the range of 60μm.A quantitative comparison between brine-aged regular bronze and brine-aged spinodal bronze showed that the hardness(Hv)was almost 80%higher for brine-aged spinodal bronze.Further,the grain size was approximately 30%finer for spinodal bronze when compared with regular bronze.When the load was increased in spinodal bronze samples,there was an initial dip in wear rate followed by a marginal increase.There was a steady increase in friction coefficient with a rise in load for brine-aged regular bronze and spinodal bronze samples.These results indicate that brine solution is the most effective quenching medium for cast Cu-Ni-Sn spinodal alloys.
基金supported by the Natural Science Foundation of Jiangsu Province(BK20210611)the China Postdoctoral Science Foundation(2018M642261)+2 种基金the Postdoctoral Science Foundation of Jiangsu Province(2018K197C)the Jiangsu Science and Technology Plan Project(BE2021367)the National Natural Science Foundation of China(31971689).
文摘Gingko biloba accumulates high levels of secondary metabolites of pharmaceutical value.Ginkgo calli develop a typical browning that reduces its regenerative capacity and thus its usefulness.To elucidate the browning mechanism,histological,transcriptomic,and metabolic alterations were compared between green and browning calli derived from immature ginkgo embryos.Histological observations revealed that browning calli had a more loosely arranged cell structure and accumulated more tannins than in green calli.Integrated metabolic and transcriptomic analyses showed that phenylpropanoid metabolism was specifi-cally activated in the browning calli,and 428 diff erentially expressed genes and 63 diff erentially abundant metabolites,including 12 fl avonoid compounds,were identifi ed in the browning calli compared to the green calli.Moreover,the expression of fl avonol synthase(FLS)and UDP-glucuronosyl-transferase(UGT)genes involved in the fl avonoid pathway was more than tenfold higher in browning calli than in green calli,thus promoting biosynthesis of fl avonol,which serves as a substrate to form glycosylated fl avonoids.Flavonoid glycosides constituted the major coloring component of the browning calli and may act in response to multiple stress conditions to delay cell death caused by browning.Our results revealed the cellular and biochemical changes in browning callus cells that accompanied changes in expression of browning-related genes,providing a scientifi c basis for improving ginkgo tissue culturability.
基金research was funded by Major Science and Technology Project of Xiamen,China(3502Z20211004)Xiamen Science and Technology Assistance Project(3502Z20194509,3502Z20204504-2,3502Z20204501-3).
文摘Potato(Solanum tuberosum L.)is susceptible to enzymatic browning after fresh processing,resulting in color change and potential alteration in the nutritional quality.In this study,a popular potato cultivar,Feiwuruita,was used to profile the metabolites involved in color and nutritional quality changes in fresh shreds stored at 0 and 4 h at 25°C(designated CK and CK4H,respectively).The shreds turned brown within 4 h of storage.In all,723 metabolites consisting 12 classes of compounds were detected in the samples,largely lipids,phenolic acids,alkaloids,amino acids and derivatives,flavonoids,organic acids,nucleotides and derivatives.Of these,163 metabolites accumulated differentially between CK and CK4H shreds.Polyphenolic compounds(phenolic acids and flavonoids)mostly increased in the shreds after 4 h storage.Conversely,the short-term storage drastically reduced lipid compounds(25 LysoPC and 19 LysoPE),while essential alkaloids and terpenoid compounds that are beneficial to human health increased in accumulation.The findings present global metabolome and nutritional composition changes in short-term stored shreds of Feiwuruita.This study provides important foundation for future studies on browning prevention/reduction and for better utilization of Feiwuruita.
基金supported by the National Natural Science Foundation of China[31872674]the Jilin Talent Development Foundation Grant[20200301018RQ]the Fundamental Research Funds for the Central Universities[CGZH202206].
文摘Obesity-induced type 2 diabetes is mainly due to excessive free fatty acids leading to insulin resistance.Increasing thermogenesis is regarded as an effective strategy for hypolipidemia and hypoglycemia.Ginsenoside is a natural active component in Panax ginseng C.A.Meyer,and some of them enhance thermogenesis.However,there are few studies on the mechanism and target of ginsenosides enhancing thermogenesis.Using thermogenic protein uncoupling protein 1(UCP1)-luciferase reporter assay,we identifi ed ginsenoside F1 as a novel UCP1 activator in the ginsenosides library.Using pull down assay and inhibitor interference,we found F1 binds toβ3-adrenergic receptors(β3-AR)to enhance UCP1 expression via cAMP/PKA/CREB pathway.We also investigated the ability of F1 on energy metabolism in obesity-induced diabetic mice,including body weight,body composition and energy expenditure.The results of proteomics showed that F1 signifi cantly up-regulated thermogenesis proteins and lipolytic proteins,but down-regulated fatty acid synthesis proteins.Ginsenoside F1 increased thermogenesis and ameliorated insulin resistance specifi cally by promoting the browning of white adipose tissue in obese mice.Additionally,ginsenoside F1 improves norepinephrine-induced insulin resistance in adipocytes and hepatocytes,and shows a stronger mitochondria respiration ability than norepinephrine.These fi ndings suggest that ginsenoside F1 is a promising lead compound in the improvement of insulin resistance.
基金supported by Kansai Electric Power Co.,Inc.,Japan.The authors gratefully acknowledge the assistance of Mr.Ikumi Asai,who holds a Master’s degree from the Graduate School of Engineering,Osaka University,Japan.
文摘DSA(dynamic strain aging)phenomenon in SUS316 steel was investigated using isothermal and non-isothermal tensile tests of simulated HAZ(heat-affected zone)thermal cycles.Isothermal tensile tests were performed on SUS316 in the peak temperature range of 20-700°C,with strain rates varying from 4.2×10^(-3)to 4.2×10^(-5)s^(-1).Based on the appearance of discontinuous plastic flows,expressed as serrations,and the hardening phenomenon of the tensile samples,the conditions for the occurrence of DSA in the SUS316 steel were investigated.Furthermore,the extent of hardening due to DSA was evaluated by comparing the hardness values of the SUS316 and SUS316EHP steels after the tensile tests.To confirm the effect of DSA on hardness in the HAZ of the welded SUS316 steel,non-isothermal tensile tests of the simulated HAZ thermal cycles were performed using a Thermec Master.The relationship between the increase in Vickers hardness due to DSA and the strain in the HAZ was determined;the effect of DSA on hardness in the HAZ could be predicted.The DSA in SUS316 steel was found to be mainly attributed to the dynamic interaction of dislocations with C and N interstitial atoms during high-temperature deformation.
基金This research was supported by the Guangdong Province Science and Technology Plan Project(2016A020210077)the National Key R&D Program of China(2020YFD1000600)。
文摘Internal browning(IB),a major physiological disorder of pineapples,usually happens in postharvest processes,but the underlying mechanism remains elusive.The bHLH transcription factors are involved in regulating various biological processes,but whether they could regulate tissue browning in fruit during storage remains unknown.Here we showed that the phenolic biosynthesis pathway was activated in pineapples showing IB following 9 days of storage.AcbHLH144 expression was the highest of the 180 transcription factors identified,downregulated in pineapple with IB,and negatively correlated with the major phenolic biosynthetic genes.AcbHLH144 was shown to be localized in the nucleus and its transient overexpression in pineapples and overexpression in Arabidopsis decreased phenolic biosynthesis.The yeast one-hybrid assay and electrophoretic mobility shift assay showed that AcbHLH144 directly bound to the Ac4CL5 promoter and the dual-luciferase reporter assay showed that it inactivated Ac4CL5 transcription.These results strongly suggest AcbHLH144 as a repressor for phenolic biosynthesis.Abscisic acid(ABA)alleviated IB,reduced phenolic accumulation,and downregulated phenolic biosynthetic genes,including Ac4CL5.Transcriptomic analysis showed that AcbHLH144 was the most upregulated of all 39 bHLHs in response to ABA.ABA enhanced AcbHLH144 expression,reduced phenolic contents,and downregulated phenolic biosynthetic genes in pineapples transiently overexpressing AcbHLH144.Moreover,ABA enhanced enzyme activity of GUS driven by the AcbHLH144 promoter.These results showed that AcbHLH144 as a repressor for phenolic biosynthesis could be activated by ABA.Collectively,the work demonstrated that AcbHLH144 negatively regulated phenolic biosynthesis via inactivating Ac4CL5 transcription to modulate pineapple IB.The findings provide novel insight into the role of AcbHLH144 in modulating pineapple IB during postharvest processes.
基金Project (51074189) supported by the National Natural Science Foundation of ChinaProject (20100162110001) supported by Research Fund for the Doctoral Program of Higher Education of ChinaProject (2011BAE09B02) supported by the National Science & Technology Special Foundation of China
文摘Effects of Cr3C2,VC and La2O3 additions on the WC grain morphology,hardness and toughness of WC-10Co alloys were investigated.To intensify the grain growth driving force,nano W and nano C,instead of the conventionally used WC,were used as the starting materials.To obtain a three-dimensional WC grain morphology,the natural sinter skins of the alloys were observed directly by scanning electron microscopy.It is shown that the additions have a strong ability in regulating the WC grain morphological and grain size distribution characteristics and the combinations of hardness and toughness.Due to the formation of regular and homogeneous triangular platelet WC grains,WC-10Co-0.6Cr3C2-0.06La2O3 alloy shows an excellent combination of hardness and toughness.The morphological regulation mechanism,the relationship between the WC grain morphology and the properties were discussed.
基金Project(61901110301)supported by the Aircraft Science Foundation,China
文摘The microstructure and hardness of the stir zone (SZ) with different welding heat inputs were investigated for friction stir-welded 2024-T3 aluminum by transmission electron microscopy, differential scanning calorimeter and Vickers micro-hardness test. The results show that welding heat input has a significant effect on the hardness of the SZ. Under high welding heat input condition, a higher welding speed is beneficial for improving the hardness of the SZ. However, when the welding heat input is low, the hardness of the SZ elevates with increasing the rotation speed. The hardness of the SZ decreases after post-welded heat treatment due to overaging. The joints welded at 500 r/min and 100 mm/min show a high resistance to overaging. The reduction of hardness in the SZ is only 3.8%, while in other joints, the reduction is more than 10%. The morphology of strengthening precipitates plays important roles for the improvement of hardness.
基金Supported by National Science Foundation of China ( GrantNo.30460085, 30960233)Open Foundation of Provincial Key Laboratory for Fruit and Vegetable Preservation of Hainan ( GrantNo. CH001)National Non-profit Institute Grant (ITBBZD2007-3-1)~~
文摘[Objective] Pericarp browning in the postharvest litchi significantly reduced its commercial value and limited the expanding of litchi markets. Physiological changes during the process of pericarp browning were determined in order to identify the underlying mechanisms. [Method] Matured Feizixiao fruits were stored at 25 ℃ and 70%±5% relative humidity. The physiological changes happened in pericarp during storage were tested at an 8-hour interval. [Result] The fruit of Feizixiao (Litchi chinensis Sonn. cv Feizixiao) turned completely brown within 72 h after being harvested under the experimental conditions. Sharp increase of the browning index occurred from 48 to 64 hours after harvest (HAH). With the browning of pericarp,water content of the whole fruit and pericarp decreased continuingly. In contrast,there were no significant changes in the water content of pulp during the same period. MDA content,pH value and relative leakage rate of pericarp were increased during storage. Most of pigment contents including anthocyanin,flavonoid,phenols,chlorophyll a and total chlorophyll decreased. POD activity was initially increased in 32 HAH and then decreased afterwards. PPO activity was decreased continuously,while the activities of catalase and superoxide dismutase exhibited the pattern of 'increasing-decreasing-increasing' as the storage time progressed. Correlation,stepwise regression and path analyses showed that water loss of pericarp was the major factor of pericarp browning. Principal and cluster analyses showed that there were two stages of pericarp browning during the course of litchi storage. [Conclusion] Water status of pericarp was the most important factor affecting pericarp browning. The pericarp browning happened by stages,which was mainly determined by the water loss of pericarp.
基金Supported by National Natural Science Foundation of China (31070164)Young Scientists Fund of Dalian (2006J23JH031)~~
文摘[Objective] This study aimed to investigate the browning of T. cuspidata cells in suspension culture and provide the guidance for the cell suspension culture of T. cuspidata. [Method] T. cuspidata callus was used as experimental materials, to explore the effect of different medium, N/P ratio, pH, shaking speed, illumination time and light intensity and other factors on browning of T. cuspidata cells in suspension culture. [Result] Non-browning callus was transferred to 2MB5 medium (pH 7.0) for illumination culture at 22℃ under light intensity of 1 500 lx with shaking speed of 90 r/min for 24 h. Results showed that the cell browning was significantly inhibited. [Conclusion] This study laid the foundation for cell suspension culture of T. cuspidata and had important significance to the large-scale industrial production of paclitaxel.
文摘H-gate and closed-gate PD SOI nMOSFETs are fabricated on SIMOX substrate,and the influence of floating body effect on the radiation hardness is studied.All the subthreshold characteristics of the devices do not change much after radiation of the total dose of 106rad(Si).The back gate threshold voltage shift of closed-gate is about 33% less than that of H-gate device.The reason should be that the body potential of the closed-gate device is raised due to impact ionization,and an electric field is produced across the BOX.The floating body effect can improve the radiation hardness of the back gate transistor.
文摘The hardness values and the wear resistance of Al2O3P/ Zn-Al composite, prepared by means of rheological casting technology,are investigated separately in this work. The results show that the addition of Al2O3P increases the hardness values of the matrix at both room and high temperature and improves the wear resistance of the material.The hardness values and the wear resistance of the composite rise with the increase of the particle volume fraction or the decrease of the particle size.The raising of test temperature results in a rapid descending of its hardness values.However, the addition of Al2O3P improves the property of high temperature resistance of Zn-Al alloys significantly.Moreover,the effect of quenching, tempering or cycling heat treatment on the hardness values of the composite is also studied.