Nanoparticle reinforced nickel matrix composite coatings, such as n-Al2O3/Ni, n-SiO2/Ni, n-SiC/Ni and n-TiO2/Ni, were fabricated by brush plating technique. Hardness, wear resistance and contact-fatigue resistance of ...Nanoparticle reinforced nickel matrix composite coatings, such as n-Al2O3/Ni, n-SiO2/Ni, n-SiC/Ni and n-TiO2/Ni, were fabricated by brush plating technique. Hardness, wear resistance and contact-fatigue resistance of the composite coatings were determined, and strengthening mechanism of the composite coatings was discussed. Results show that the composite coatings have superior properties to the Ni metal coating. Compared with properties of brush plated Ni metal coating, the composite coatings have hardness over 1.5 times and wear resistance capability of about 2.5 times. The strengthening mechanism of the composite coatings mainly includes fine-crystal grain effect, nanoparticle dispersion effect and dislocation effect.展开更多
基金Project(G199906509) supported by the National Basic Research Program of China Project(2002M3) supported by China/UK Collaboration Subject Project(50235030) supported by the National Natural Science Foundation of China
文摘Nanoparticle reinforced nickel matrix composite coatings, such as n-Al2O3/Ni, n-SiO2/Ni, n-SiC/Ni and n-TiO2/Ni, were fabricated by brush plating technique. Hardness, wear resistance and contact-fatigue resistance of the composite coatings were determined, and strengthening mechanism of the composite coatings was discussed. Results show that the composite coatings have superior properties to the Ni metal coating. Compared with properties of brush plated Ni metal coating, the composite coatings have hardness over 1.5 times and wear resistance capability of about 2.5 times. The strengthening mechanism of the composite coatings mainly includes fine-crystal grain effect, nanoparticle dispersion effect and dislocation effect.