期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Numerical Simulation of Shock Bubble Interaction with Different Mach Numbers
1
作者 杨洁 万振华 +1 位作者 王伯福 孙德军 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第3期66-69,共4页
The interaction of a shock wave with a spherical helium bubble is investigated numerically by using the high- resolution piecewise parabolic method (PPM), in which the viscous and turbulence effects are both conside... The interaction of a shock wave with a spherical helium bubble is investigated numerically by using the high- resolution piecewise parabolic method (PPM), in which the viscous and turbulence effects are both considered. The bubble is of the same size and is accelerated by a planar shock of different Mach numbers (Ma). The re- suits of low Ma cases agree quantitatively with those of experiments [G. Layes, O. Le M4tayer. Phys. Fluids 19 (2007) 042105]. With the increase of Ma, the final geometry of the bubble becomes quite different, the com- pression ratio is highly raised, and the time-dependent mean bubble velocity is also influenced. The compression ratios measured can be well normalized when Ma is low, while less agreement has been achieved for high Ma cases. In addition, the mixedness between two fluids is enhanced greatly as Ma increases. Some existed scaling laws of these quantities for the shock wave strength cannot be directly applied to high Ma cases. 展开更多
关键词 Numerical Simulation of Shock bubble Interaction with Different Mach numbers
下载PDF
A numerical model for cloud cavitation based on bubble cluster 被引量:1
2
作者 Tezhuan Du Yiwei Wang +1 位作者 Chenguang Huang Lijuan Liao 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2017年第4期231-234,共4页
The cavitation cloud of different internal structures results in different collapse pressures owing to the interaction among bubbles. The internal structure of cloud cavitation is required to accurately predict collap... The cavitation cloud of different internal structures results in different collapse pressures owing to the interaction among bubbles. The internal structure of cloud cavitation is required to accurately predict collapse pressure. A cavitation model was developed through dimensional analysis and direct numerical simulation of collapse of bubble cluster. Bubble number density was included in proposed model to characterize the internal structure of bubble cloud. Implemented on flows over a projectile, the proposed model predicts a higher collapse pressure compared with Singhal model. Results indicate that the collapse pressure of detached cavitation cloud is affected by bubble number density. 展开更多
关键词 Cavitation model bubble number density bubble cluster Collapse
下载PDF
An experimental study on microscopic characteristics of gas-bearing sediments under different gas reservoir pressures 被引量:2
3
作者 Zhenqi Guo Tao Liu +3 位作者 Lei Guo Xiuting Su Yan Zhang Sanpeng Li 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2021年第10期144-151,共8页
Gas-bearing sediments are widely distributed in five continents all over the world.Most of the gases exist in the soil skeleton in the form of discrete large bubbles.The existence of gas-phase may increase or decrease... Gas-bearing sediments are widely distributed in five continents all over the world.Most of the gases exist in the soil skeleton in the form of discrete large bubbles.The existence of gas-phase may increase or decrease the strength of the soil skeleton.So far,bubbles’structural morphology and evolution characteristics in soil skeleton lack research,and the influence of different gas reservoir pressures on bubbles are still unclear.The micro characteristics of bubbles in the same sediment sample were studied using an industrial CT scanning test system to solve these problems.Using the image processing software,the micro variation characteristics of gas-bearing sediments in gas reservoir pressure change are obtained.The results show that the number and volume of bubbles in different equivalent radius ranges will change regularly under different gas reservoir pressure.With the increase of gas reservoir pressure,the number and volume of tiny bubbles decrease.In contrast,the number and volume of large bubbles increase,and the gas content in different positions increases and occupies a dominant position,driving the reduction of pore water and soil skeleton movement. 展开更多
关键词 micro characteristics CT scanning gas content number and volume of bubbles gas reservoir pressure seabed sediments
下载PDF
Numerical study of separation on the trailing edge of a symmetrical airfoil at a low Reynolds number 被引量:8
4
作者 Lei Juanmian Guo Feng Huang Can 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第4期918-925,共8页
This study focuses on the trailing-edge separation of a symmetrical airfoil at a low Rey-nolds number. Finite volume method is adopted to solve the unsteady Reynolds-averaged Navier-Stokes (RANS) equation. Flow of t... This study focuses on the trailing-edge separation of a symmetrical airfoil at a low Rey-nolds number. Finite volume method is adopted to solve the unsteady Reynolds-averaged Navier-Stokes (RANS) equation. Flow of the symmetrical airfoil SD8020 at a low Reynolds number has been simulated. Laminar separation bubble in the flow field of the airfoil is observed and process of unsteady bubble burst and vortex shedding from airfoil surfaces is investigated. The time-dependent lift coefficient is characteristic of periodic fluctuations and the lift curve varies nonlinearly with the attack of angle. Laminar separation occurs on both surfaces of airfoil at small angles of attack. With the increase of angle of attack, laminar separation occurs and then reattaches near the trailing edge on the upper surface of airfoil, which forms laminar separation bubble. When the attack of angle reaches certain value, the laminar separation bubble is unstable and produces two kinds of large scale vortex, i.e. primary vortex and secondary vortex. The periodic processes that include secondary vortex production, motion of secondary vortex and vortex shedding cause fluctuation of the lift coefficient. The periodic time varies with attack of angle. The secondary vortex is relatively stronger than the primary vortex, which means its influence is relatively stronger than the primary vortex. 展开更多
关键词 Laminar separation bubble Low Reynolds number Simulation Symmetrical airfoil Trailing-edge separation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部