This study reported and discussed turbulence characteristics,such as turbulence intensity,correlation time scales,and advective length scales.The characteristic air–water time scale,including the particle chord time ...This study reported and discussed turbulence characteristics,such as turbulence intensity,correlation time scales,and advective length scales.The characteristic air–water time scale,including the particle chord time and length and their probability density functions(PDFs),was investigated.The results demonstrated that turbulence intensity was relatively greater on a rough bed in the roller length,whereas further downstream,the decay rate was higher.In addition,the relationship between turbulence intensity and dimensionless bubble count rate reflected an increase in turbulence intensity associated with the number of entrained particles.Triple decomposition analysis(TDA)was performed to determine the contributions of slow and fast turbulent components.The TDA results indicated that,regardless of bed type and inflow conditions,the sum of the band-pass(T'_(u))and high-pass(T″_(u))filtered turbulence intensities was equal to the turbulence intensity of the raw signal data(T_(u)).T″_(u) highlighted a higher turbulence intensity and larger vorticities on the rough bed for an identical inflow Froude number.Additional TDA results were presented in terms of the interfacial velocity,auto-and cross-correlation time scales,and longitudinal advection length scale,with the effects of low-and high-frequency signal components on each highlighted parameter.The analysis of the air chord time indicated an increase in the proportion of small bubbles moving downstream.The second part of this research focused on the basic properties of particle grouping and clustering.展开更多
A full second-order moment (FSM) model and an algebraic stress (ASM) two-phase turbulence modelare proposed and applied to predict turbulent bubble-liquid flows in a 2D rectangular bubble column. Predictiongives the b...A full second-order moment (FSM) model and an algebraic stress (ASM) two-phase turbulence modelare proposed and applied to predict turbulent bubble-liquid flows in a 2D rectangular bubble column. Predictiongives the bubble and liquid velocities, bubble volume fraction, bubble and liquid Reynolds stresses and bubble-liquidvelocity correlation. For predicted two-phase velocities and bubble volume fraction there is only slight differencebetween these two models, and the simulation results using both two models are in good agreement with the particleimage velocimetry (PIV) measurements. Although the predicted two-phase Reynolds stresses using the FSM are insomewhat better agreement with the PIV measurements than those predicted using the ASM, the Reynolds stressespredicted using both two models are in general agreement with the experiments. Therefore, it is suggested to usethe ASM two-phase turbulence model in engineering application for saving the computation time.展开更多
There are contradicted opinions on whether bubbles enhance or reduce the liquid turbulence. In this paper, the effect of void fraction and inlet velocity on the bubble-liquid two-phase turbulence of the multiple bubbl...There are contradicted opinions on whether bubbles enhance or reduce the liquid turbulence. In this paper, the effect of void fraction and inlet velocity on the bubble-liquid two-phase turbulence of the multiple bubble-liquid jets in a two-dimensional channel is studied by using the two-phase second-order moment turbulence model. The results confirm the phenomena observed in experiments and reported in references that at a low void fraction and low inlet velocities the bubbles enhance the liquid turbulence, whereas at a high void fraction and high inlet velocities the bubbles reduce the liquid turbulence.展开更多
This research focused on the study of heat and mass transfers in a two-phase stratified turbulent fluid flow in a geothermal pipe with chemical reaction. The derived non-linear partial differential equations governing...This research focused on the study of heat and mass transfers in a two-phase stratified turbulent fluid flow in a geothermal pipe with chemical reaction. The derived non-linear partial differential equations governing the flow were solved using the Finite Difference Method. The effects of various physical parameters on the concentration, skin friction, heat, and mass transfers have been determined. Analysis of the results obtained indicated that the coefficient of skin friction decreased with an increase in Reynolds number and solutal Grasholf number, the rate of heat transfer increased with an increase in Eckert number, Prandtl number, and angle of inclination, and the rate of mass transfer increased with increase in Reynolds number, Chemical reaction parameter and angle of inclination. The findings would be useful to engineers in designing and maintaining geothermal pipelines more effectively.展开更多
A second-order moment two-phase turbulence model for simulating dense gas-particle flows (USM-Θ model), combining the unified second-order moment twophase turbulence model for dilute gas-particle flows with the kin...A second-order moment two-phase turbulence model for simulating dense gas-particle flows (USM-Θ model), combining the unified second-order moment twophase turbulence model for dilute gas-particle flows with the kinetic theory of particle collision, is proposed. The interaction between gas and particle turbulence is simulated using the transport equation of two-phase velocity correlation with a two-time-scale dissipation closure. The proposed model is applied to simulate dense gas-particle flows in a horizontal channel and a downer. Simulation results and their comparison with experimental results show that the model accounting for both anisotropic particle turbulence and particle-particle collision is obviously better than models accounting for only particle turbulence or only particle-particle collision. The USM-Θ model is also better than the k-ε-kp-Θ model and the k-ε-kp-εp-Θ model in that the first model can simulate the redistribution of anisotropic particle Reynolds stress components due to inter-particle collision, whereas the second and third models cannot.展开更多
The particle modulations to turbulence in round jets were experimentally studied by means of two-phase velocity measurements with Phase Doppler Anemometer (PDA). Laden with very large particles, no significant atten...The particle modulations to turbulence in round jets were experimentally studied by means of two-phase velocity measurements with Phase Doppler Anemometer (PDA). Laden with very large particles, no significant attenuations of turbulence intensities were measured in the farfields, due to small two-phase slip velocities and particle Reynolds number. The gas-phase turbulence is enhanced by particles in the near-fields, but it is significantly attenuated by the small particles in the far-fields. The smaller particles have a more profound effect on the attenuation of turbulence intensities. The enhancements or attenuations of turbulence intensities in the far-fields depends on the energy production, transport and dissipation mechanisms between the two phases, which are determined by the particle prop- erties and two-phase velocity slips. The non-dimensional parameter CTI is introduced to represent the change of turbulence intensity.展开更多
A two-equation turbulence model has been dereloped for predicting two-phase flow the two equations describe the conserration of turbulence kinetic energy and dissipation rate of that energy for the incompressible carr...A two-equation turbulence model has been dereloped for predicting two-phase flow the two equations describe the conserration of turbulence kinetic energy and dissipation rate of that energy for the incompressible carrier fluid in a two-phase flow The continuity, the momentum, K and εequations are modeled. In this model,the solid-liquid slip veloeites, the particle-particte interactions and the interactions between two phases are considered,The sandy water pipe turbulent flows are sueeessfuly predicted by this turbulince model.展开更多
A mathematical model is set to evaluate the 3-D dense solid-liquid two-phaseturbulent flow in a non-clogging mud pump, the flow feature in the impeller channel is simulatedwith the tool of IPSA. Meanwhile, resort to T...A mathematical model is set to evaluate the 3-D dense solid-liquid two-phaseturbulent flow in a non-clogging mud pump, the flow feature in the impeller channel is simulatedwith the tool of IPSA. Meanwhile, resort to TECPLOT as the post-processor, the simulation results isvisualized. The results show the main flow characteristics: There exists backflow and aberrantvelocities at inlet area and a relative velocity slip between two phases; A jet-wake flow pattern isdiscerned around the shroud-suction side area; The relative velocity vector of solid phase iscloser to the pressure surface than that of liquid phase and the trend is more obvious with theincrease of diameter; The kinetic energy of turbulence k and the dissipation rate e reach theirpeaks at the corner of pressure and suction surface. The simulation results show a good agreementwith the experimental flow features in the impeller channel, which prove the turbulent model used isvalid and provide a theoretical design basis to non-clogging pumps.展开更多
The dense solid-phase governing equations for two-phase flows are obtained by using the kinetic theory of gas molecules.Assuming that the solid-phase velocity distributions obey the Maxwell equations,the collision ter...The dense solid-phase governing equations for two-phase flows are obtained by using the kinetic theory of gas molecules.Assuming that the solid-phase velocity distributions obey the Maxwell equations,the collision term for particles under dense two-phase flow conditions is also derived. In comparison with the governing equations of a dilute two-phase flow,the solid-particle's governing equations are developed for a dense turbulent solid-liquid flow by adopting some relevant terms from the dilute two-phase governing equations.Based on Cauchy-Helmholtz theorem and Smagorinsky model, a second-order dynamic sub-grid-scale(SGS)model,in which the sub-grid-scale stress is a function of both the strain-rate tensor and the rotation-rate tensor,is proposed to model the two-phase governing equations by applying dimension analyses.Applying the SIMPLEC algorithm and staggering grid system to the two-phase discretized governing equations and employing the slip boundary conditions on the walls,the velocity and pressure fields,and the volumetric concentration are calculated.The simulation results are in a fairly good agreement with experimental data in two operating cases in a conduit with a rectangular cross-section and these comparisons imply that these models are practical.展开更多
A statistical formalism overcoming some conceptual and practical difficulties arising in existing two-phase flow (2PHF) mathematical modelling has been applied to propose a model for dilute 2PHF turbulent Hows. Phase ...A statistical formalism overcoming some conceptual and practical difficulties arising in existing two-phase flow (2PHF) mathematical modelling has been applied to propose a model for dilute 2PHF turbulent Hows. Phase interaction terms with a clear physical meaning enter the equations and the formalism provides some guidelines for the avoidance of closure assumptions or the rational approximation of these terms. Continuous phase averaged continuity, momentum, turbulent kinetic energy and turbulence dissipation rate equations have been rigorously and systematically obtained in a single step. These equations display a structure similar to that for single-phase flows. It is also assumed that dispersed phase dynamics is well described by a probability density function (pdf) equation and Eulerian continuity, momentum and fluctuating kinetic energy equations for the dispersed phase are deduced. An extension of the standard k-e turbulence model for the continuous phase is used. A gradient transport model is adopted for the dispersed phase fluctuating fluxes of momentum and kinetic energy at the non-colliding, large inertia limit. This model is then used to predict the behaviour of three axisymmetric turbulent jets of air laden with solid particles varying in size and concentration. Qualitative and quantitative numerical predictions compare reasonably well with the three different sets of experimental results, studying the influence of particle size, loading ratio and flow confinement velocity.展开更多
An improved large eddy simulation using a dynamic second-order sub-grid-scale (SGS) stress model has been developed to model the governing equations of dense turbulent particle-liquid two-phase flows in a rotating c...An improved large eddy simulation using a dynamic second-order sub-grid-scale (SGS) stress model has been developed to model the governing equations of dense turbulent particle-liquid two-phase flows in a rotating coordinate system, and continuity is conserved by a mass-weighted method to solve the filtered governing equations. In the cur- rent second-order SGS model, the SGS stress is a function of both the resolved strain-rate and rotation-rate tensors, and the model parameters are obtained from the dimensional consistency and the invariants of the strain-rate and the rotation-rate tensors. In the numerical calculation, the finite volume method is used to discretize the governing equations with a staggered grid system. The SIMPLEC algorithm is applied for the solution of the discretized governing equations. Body- fitted coordinates are used to simulate the two-phase flows in complex geometries. Finally the second-order dynamic SGS model is successfully applied to simulate the dense turbu-lent particle-liquid two-phase flows in a centrifugal impeller. The predicted pressure and velocity distributions are in good agreement with experimental results.展开更多
Free surface flows aeration potential causing the in macro- and intermediate flow characteristics to vary roughness conditions have a high with slopes and discharges. The underlying mechanism of two-phase flow charact...Free surface flows aeration potential causing the in macro- and intermediate flow characteristics to vary roughness conditions have a high with slopes and discharges. The underlying mechanism of two-phase flow characteristics in macro- and intermediate roughness conditions were analyzed in an experimental setup assembled at the Laboratory of Hydraulic Protection of the Territory (PITLAB) of the University of Pisa, Italy. Crushed angular rocks and hemispherical boulders were used to intensify the roughness of the bed. Flow rates per unit width ranging between 0.03 m^2/s and 0.09 m^2/s and slopes between 0.26 and 0.46 were tested over different arrangements of a rough bed. Analyses were mainly carried out in the inner flow region, which consists of both bubbly and intermediate flow regions. The findings revealed that the two-phase flow properties over the rough bed were much affected by rough bed arrangements. Turbulence features of two-phase flows over the rough bed were compared with those of the stepped chute data under similar flow conditions. Overall, the results highlight the flow features in the inner layers of the two-phase flow, showing that the maximum turbulence intensity decreases with the relative submergence, while the bubble frequency distribution is affected by the rough bed elements.展开更多
A mathematical modei of two-dimensional turbulent gas-particle twophase flow based on the modified diffusion flux modei (DFM) and a numerical simulation method to analyze the gas-particle flow structures are developed...A mathematical modei of two-dimensional turbulent gas-particle twophase flow based on the modified diffusion flux modei (DFM) and a numerical simulation method to analyze the gas-particle flow structures are developed. The modified diffusion flux modei, in which the acceleration due to various forces is taken into account for the calculation of the diffusion velocity of particles, is applicable to the analysis of multi-dimensional gas-particle two-phase turbulent flow. In order to verify its accuracy and efficiency, the numerical simulation by DFM is compared with experimental studies and the prediction by k-ε-kp two-fluid modei, which shows a reasonable agreement. It is confirmed that the modified diffusion flux modei is suitable for simulating the multi-dimensional gas-particle two-phase flow.展开更多
This study investigates the effect of injecting nanofluids containing nano-SiO_2 as drag reducing agents(DRA) at different concentrations on the pressure drop of air-water flow through horizontal pipe.The test fluid u...This study investigates the effect of injecting nanofluids containing nano-SiO_2 as drag reducing agents(DRA) at different concentrations on the pressure drop of air-water flow through horizontal pipe.The test fluid used in this study was air-water with nano-SiO_2 particles at 0.1%-1%mass concentration.The test sections of the experimental set-up were five pipes of the same length of 9 m with ID from 0.0127m-0.03175m(0.5 to 1.25 in).Airwater flow was run in slug flow regime under different volumetric flow rates.The results of drag reduction(η%)indicated that the addition of DRA could be efficient up to some dosage.Drag reduction performed much better for smaller pipe diameters than it did for larger ones.For various nanosilica concentrations,the maximum drag reduction was about 66.8%for 0.75%mass concentration of nanosilica.展开更多
The turbulent fluid and particle interaction in the turbulent boundary layer for cross how over a cylinder has been experimentally studied. A phase-Doppler anemometer was used to measure the mean and fluctuating veloc...The turbulent fluid and particle interaction in the turbulent boundary layer for cross how over a cylinder has been experimentally studied. A phase-Doppler anemometer was used to measure the mean and fluctuating velocities of both phases. Two size ranges of particles (30 mu m similar to 60 mu m and 80 mu m similar to 150 mu m) at certain concentrations were used for considering the effects of particle sizes on the mean velocity profiles and on the turbulent intensity levels. The measurements clearly demonstrated that the larger particles damped fluid turbulence. For the smaller particles, this damping effect was less noticeable. The measurements further showed a delay in the separation point for two phase turbulent cross how over a cylinder.展开更多
The basic equations of turbulent gas-solid flows are derived by using the pseudo-fluid model of particle phase with a refined two-phase turbulence model.These equations are then applied to swirling gas-particle flows ...The basic equations of turbulent gas-solid flows are derived by using the pseudo-fluid model of particle phase with a refined two-phase turbulence model.These equations are then applied to swirling gas-particle flows for analyzing the collection efficiency in cyclone separators.展开更多
Turbulent dispersed multiphase flows,including gas-particle,gas-droplet and bubble-liquid flows,are widely encountered in various engineering facilities.Modeling of two-phase turbulence,in particular the dispersed pha...Turbulent dispersed multiphase flows,including gas-particle,gas-droplet and bubble-liquid flows,are widely encountered in various engineering facilities.Modeling of two-phase turbulence,in particular the dispersed phase turbulence,is the key problem in the Eulerian-Eulerian simulation of practical dispersed multiphase flows.Although different models were developed and used,the experimental validation shows that they cannot always give satisfactory prediction results.In this paper the present author give a detailed review of the unified second-order moment (USM),k-k p and nonlinear k-k p two-phase turbulence models,proposed by him.The derivation and closure of these models are described in detail and the experimental validation and application of these models are extensively discussed.展开更多
Considering the influence of hydrogen gas generated during electrochemical machining on the conductivity of electrolyte, a two-phase turbulent flow model is presented to describe the gas bubbles distribution.The k-e t...Considering the influence of hydrogen gas generated during electrochemical machining on the conductivity of electrolyte, a two-phase turbulent flow model is presented to describe the gas bubbles distribution.The k-e turbulent model is used to describe the electrolyte flow field.The Euler–Euler model based on viscous drag and pressure force is used to calculate the twodimensional distribution of gas volume fraction.A multi-physics coupling model of electric field,two-phase flow field and temperature field is established and solved by weak coupling iteration method.The numerical simulation results of gas volume fraction, temperature and conductivity in equilibrium state are discussed.The distributions of machining gap at different time are analyzed.The predicted results of the machining gap are consistent with the experimental results, and the maximum deviation between them is less than 50 lm.展开更多
The Large-eddy simulation (LES) with two-way coupling is used to study bubble-liquid two-phase confined multiple jets discharged into a 2D channel.The LES results reveal the large-eddy vortex structures of both liquid...The Large-eddy simulation (LES) with two-way coupling is used to study bubble-liquid two-phase confined multiple jets discharged into a 2D channel.The LES results reveal the large-eddy vortex structures of both liquid flow and bubble motion,the shear-generated and bubble-induced liquid turbulence,and indicate much stronger bubble fluctuation than that of the liquid,the enhancement of liquid turbulence by bubbles.Both shear and bubble-liquid interaction are important for the liquid turbulence generation in the case studied.展开更多
Dense gas-particle flows are frequently encountered in fluidized beds,riser and downer reactors,pneumatic transport and the near-wall zone of dilute gas-particle flows.Particle-particle collision plays an important ro...Dense gas-particle flows are frequently encountered in fluidized beds,riser and downer reactors,pneumatic transport and the near-wall zone of dilute gas-particle flows.Particle-particle collision plays an important role in the behavior of two-phase flows.In this paper a USM-Q two-phase turbulence model for dense gas-particle flows is proposed to account for both two-phase turbulence and inter-particle collision.For two-fluid large-eddy simulation of gas-particle flows,the author proposed a unified second-order moment(USM) two-phase SGS stress model and a two-phase k-kp SGS energy-equation stress model.The proposed models can fully account for the interaction between the gas and particle SGS stresses.展开更多
文摘This study reported and discussed turbulence characteristics,such as turbulence intensity,correlation time scales,and advective length scales.The characteristic air–water time scale,including the particle chord time and length and their probability density functions(PDFs),was investigated.The results demonstrated that turbulence intensity was relatively greater on a rough bed in the roller length,whereas further downstream,the decay rate was higher.In addition,the relationship between turbulence intensity and dimensionless bubble count rate reflected an increase in turbulence intensity associated with the number of entrained particles.Triple decomposition analysis(TDA)was performed to determine the contributions of slow and fast turbulent components.The TDA results indicated that,regardless of bed type and inflow conditions,the sum of the band-pass(T'_(u))and high-pass(T″_(u))filtered turbulence intensities was equal to the turbulence intensity of the raw signal data(T_(u)).T″_(u) highlighted a higher turbulence intensity and larger vorticities on the rough bed for an identical inflow Froude number.Additional TDA results were presented in terms of the interfacial velocity,auto-and cross-correlation time scales,and longitudinal advection length scale,with the effects of low-and high-frequency signal components on each highlighted parameter.The analysis of the air chord time indicated an increase in the proportion of small bubbles moving downstream.The second part of this research focused on the basic properties of particle grouping and clustering.
基金Supported by the Special Funds for Major State Basic Research Projects, PRC(G1999-0222-08) and the National Natural Science Foundation of China(No. 19872039).
文摘A full second-order moment (FSM) model and an algebraic stress (ASM) two-phase turbulence modelare proposed and applied to predict turbulent bubble-liquid flows in a 2D rectangular bubble column. Predictiongives the bubble and liquid velocities, bubble volume fraction, bubble and liquid Reynolds stresses and bubble-liquidvelocity correlation. For predicted two-phase velocities and bubble volume fraction there is only slight differencebetween these two models, and the simulation results using both two models are in good agreement with the particleimage velocimetry (PIV) measurements. Although the predicted two-phase Reynolds stresses using the FSM are insomewhat better agreement with the PIV measurements than those predicted using the ASM, the Reynolds stressespredicted using both two models are in general agreement with the experiments. Therefore, it is suggested to usethe ASM two-phase turbulence model in engineering application for saving the computation time.
基金The project supported by the China Special Funds for Major State Basic Research (G-1999-0222-08)the Innovation and Technology Commission of Hong Kong and Aoyagi (H.K.) Ltd, Hong Kong, under the Grant No. UIM/122.
文摘There are contradicted opinions on whether bubbles enhance or reduce the liquid turbulence. In this paper, the effect of void fraction and inlet velocity on the bubble-liquid two-phase turbulence of the multiple bubble-liquid jets in a two-dimensional channel is studied by using the two-phase second-order moment turbulence model. The results confirm the phenomena observed in experiments and reported in references that at a low void fraction and low inlet velocities the bubbles enhance the liquid turbulence, whereas at a high void fraction and high inlet velocities the bubbles reduce the liquid turbulence.
文摘This research focused on the study of heat and mass transfers in a two-phase stratified turbulent fluid flow in a geothermal pipe with chemical reaction. The derived non-linear partial differential equations governing the flow were solved using the Finite Difference Method. The effects of various physical parameters on the concentration, skin friction, heat, and mass transfers have been determined. Analysis of the results obtained indicated that the coefficient of skin friction decreased with an increase in Reynolds number and solutal Grasholf number, the rate of heat transfer increased with an increase in Eckert number, Prandtl number, and angle of inclination, and the rate of mass transfer increased with increase in Reynolds number, Chemical reaction parameter and angle of inclination. The findings would be useful to engineers in designing and maintaining geothermal pipelines more effectively.
基金the Special Funds for Major State Basic Research of China(G-1999-0222-08)the National Natural Science Foundation of China(50376004)Ph.D.Program Foundation,Ministry of Education of China(20030007028)
文摘A second-order moment two-phase turbulence model for simulating dense gas-particle flows (USM-Θ model), combining the unified second-order moment twophase turbulence model for dilute gas-particle flows with the kinetic theory of particle collision, is proposed. The interaction between gas and particle turbulence is simulated using the transport equation of two-phase velocity correlation with a two-time-scale dissipation closure. The proposed model is applied to simulate dense gas-particle flows in a horizontal channel and a downer. Simulation results and their comparison with experimental results show that the model accounting for both anisotropic particle turbulence and particle-particle collision is obviously better than models accounting for only particle turbulence or only particle-particle collision. The USM-Θ model is also better than the k-ε-kp-Θ model and the k-ε-kp-εp-Θ model in that the first model can simulate the redistribution of anisotropic particle Reynolds stress components due to inter-particle collision, whereas the second and third models cannot.
基金supported by the National Natural Science Foundation of China (50876053 and 50706021).
文摘The particle modulations to turbulence in round jets were experimentally studied by means of two-phase velocity measurements with Phase Doppler Anemometer (PDA). Laden with very large particles, no significant attenuations of turbulence intensities were measured in the farfields, due to small two-phase slip velocities and particle Reynolds number. The gas-phase turbulence is enhanced by particles in the near-fields, but it is significantly attenuated by the small particles in the far-fields. The smaller particles have a more profound effect on the attenuation of turbulence intensities. The enhancements or attenuations of turbulence intensities in the far-fields depends on the energy production, transport and dissipation mechanisms between the two phases, which are determined by the particle prop- erties and two-phase velocity slips. The non-dimensional parameter CTI is introduced to represent the change of turbulence intensity.
文摘A two-equation turbulence model has been dereloped for predicting two-phase flow the two equations describe the conserration of turbulence kinetic energy and dissipation rate of that energy for the incompressible carrier fluid in a two-phase flow The continuity, the momentum, K and εequations are modeled. In this model,the solid-liquid slip veloeites, the particle-particte interactions and the interactions between two phases are considered,The sandy water pipe turbulent flows are sueeessfuly predicted by this turbulince model.
文摘A mathematical model is set to evaluate the 3-D dense solid-liquid two-phaseturbulent flow in a non-clogging mud pump, the flow feature in the impeller channel is simulatedwith the tool of IPSA. Meanwhile, resort to TECPLOT as the post-processor, the simulation results isvisualized. The results show the main flow characteristics: There exists backflow and aberrantvelocities at inlet area and a relative velocity slip between two phases; A jet-wake flow pattern isdiscerned around the shroud-suction side area; The relative velocity vector of solid phase iscloser to the pressure surface than that of liquid phase and the trend is more obvious with theincrease of diameter; The kinetic energy of turbulence k and the dissipation rate e reach theirpeaks at the corner of pressure and suction surface. The simulation results show a good agreementwith the experimental flow features in the impeller channel, which prove the turbulent model used isvalid and provide a theoretical design basis to non-clogging pumps.
基金The project supported by the National Natural Science Foundation of China (50176022)
文摘The dense solid-phase governing equations for two-phase flows are obtained by using the kinetic theory of gas molecules.Assuming that the solid-phase velocity distributions obey the Maxwell equations,the collision term for particles under dense two-phase flow conditions is also derived. In comparison with the governing equations of a dilute two-phase flow,the solid-particle's governing equations are developed for a dense turbulent solid-liquid flow by adopting some relevant terms from the dilute two-phase governing equations.Based on Cauchy-Helmholtz theorem and Smagorinsky model, a second-order dynamic sub-grid-scale(SGS)model,in which the sub-grid-scale stress is a function of both the strain-rate tensor and the rotation-rate tensor,is proposed to model the two-phase governing equations by applying dimension analyses.Applying the SIMPLEC algorithm and staggering grid system to the two-phase discretized governing equations and employing the slip boundary conditions on the walls,the velocity and pressure fields,and the volumetric concentration are calculated.The simulation results are in a fairly good agreement with experimental data in two operating cases in a conduit with a rectangular cross-section and these comparisons imply that these models are practical.
基金Supported by the Spanish CICYTR &D National Programs,under contract PB91-0699.
文摘A statistical formalism overcoming some conceptual and practical difficulties arising in existing two-phase flow (2PHF) mathematical modelling has been applied to propose a model for dilute 2PHF turbulent Hows. Phase interaction terms with a clear physical meaning enter the equations and the formalism provides some guidelines for the avoidance of closure assumptions or the rational approximation of these terms. Continuous phase averaged continuity, momentum, turbulent kinetic energy and turbulence dissipation rate equations have been rigorously and systematically obtained in a single step. These equations display a structure similar to that for single-phase flows. It is also assumed that dispersed phase dynamics is well described by a probability density function (pdf) equation and Eulerian continuity, momentum and fluctuating kinetic energy equations for the dispersed phase are deduced. An extension of the standard k-e turbulence model for the continuous phase is used. A gradient transport model is adopted for the dispersed phase fluctuating fluxes of momentum and kinetic energy at the non-colliding, large inertia limit. This model is then used to predict the behaviour of three axisymmetric turbulent jets of air laden with solid particles varying in size and concentration. Qualitative and quantitative numerical predictions compare reasonably well with the three different sets of experimental results, studying the influence of particle size, loading ratio and flow confinement velocity.
基金the National Natural Science Foundation of China(50779069 and 90510007)the Start-up Scientific Research Foundation of China Agricultural University(2006021)the Beijing Natural Science Foundation(3071002).
文摘An improved large eddy simulation using a dynamic second-order sub-grid-scale (SGS) stress model has been developed to model the governing equations of dense turbulent particle-liquid two-phase flows in a rotating coordinate system, and continuity is conserved by a mass-weighted method to solve the filtered governing equations. In the cur- rent second-order SGS model, the SGS stress is a function of both the resolved strain-rate and rotation-rate tensors, and the model parameters are obtained from the dimensional consistency and the invariants of the strain-rate and the rotation-rate tensors. In the numerical calculation, the finite volume method is used to discretize the governing equations with a staggered grid system. The SIMPLEC algorithm is applied for the solution of the discretized governing equations. Body- fitted coordinates are used to simulate the two-phase flows in complex geometries. Finally the second-order dynamic SGS model is successfully applied to simulate the dense turbu-lent particle-liquid two-phase flows in a centrifugal impeller. The predicted pressure and velocity distributions are in good agreement with experimental results.
文摘Free surface flows aeration potential causing the in macro- and intermediate flow characteristics to vary roughness conditions have a high with slopes and discharges. The underlying mechanism of two-phase flow characteristics in macro- and intermediate roughness conditions were analyzed in an experimental setup assembled at the Laboratory of Hydraulic Protection of the Territory (PITLAB) of the University of Pisa, Italy. Crushed angular rocks and hemispherical boulders were used to intensify the roughness of the bed. Flow rates per unit width ranging between 0.03 m^2/s and 0.09 m^2/s and slopes between 0.26 and 0.46 were tested over different arrangements of a rough bed. Analyses were mainly carried out in the inner flow region, which consists of both bubbly and intermediate flow regions. The findings revealed that the two-phase flow properties over the rough bed were much affected by rough bed arrangements. Turbulence features of two-phase flows over the rough bed were compared with those of the stepped chute data under similar flow conditions. Overall, the results highlight the flow features in the inner layers of the two-phase flow, showing that the maximum turbulence intensity decreases with the relative submergence, while the bubble frequency distribution is affected by the rough bed elements.
基金Special Funds for Major State Basic Research Projects of China(G1999022200)
文摘A mathematical modei of two-dimensional turbulent gas-particle twophase flow based on the modified diffusion flux modei (DFM) and a numerical simulation method to analyze the gas-particle flow structures are developed. The modified diffusion flux modei, in which the acceleration due to various forces is taken into account for the calculation of the diffusion velocity of particles, is applicable to the analysis of multi-dimensional gas-particle two-phase turbulent flow. In order to verify its accuracy and efficiency, the numerical simulation by DFM is compared with experimental studies and the prediction by k-ε-kp two-fluid modei, which shows a reasonable agreement. It is confirmed that the modified diffusion flux modei is suitable for simulating the multi-dimensional gas-particle two-phase flow.
文摘This study investigates the effect of injecting nanofluids containing nano-SiO_2 as drag reducing agents(DRA) at different concentrations on the pressure drop of air-water flow through horizontal pipe.The test fluid used in this study was air-water with nano-SiO_2 particles at 0.1%-1%mass concentration.The test sections of the experimental set-up were five pipes of the same length of 9 m with ID from 0.0127m-0.03175m(0.5 to 1.25 in).Airwater flow was run in slug flow regime under different volumetric flow rates.The results of drag reduction(η%)indicated that the addition of DRA could be efficient up to some dosage.Drag reduction performed much better for smaller pipe diameters than it did for larger ones.For various nanosilica concentrations,the maximum drag reduction was about 66.8%for 0.75%mass concentration of nanosilica.
基金The project supported by the National Natural Science Foundation of China
文摘The turbulent fluid and particle interaction in the turbulent boundary layer for cross how over a cylinder has been experimentally studied. A phase-Doppler anemometer was used to measure the mean and fluctuating velocities of both phases. Two size ranges of particles (30 mu m similar to 60 mu m and 80 mu m similar to 150 mu m) at certain concentrations were used for considering the effects of particle sizes on the mean velocity profiles and on the turbulent intensity levels. The measurements clearly demonstrated that the larger particles damped fluid turbulence. For the smaller particles, this damping effect was less noticeable. The measurements further showed a delay in the separation point for two phase turbulent cross how over a cylinder.
文摘The basic equations of turbulent gas-solid flows are derived by using the pseudo-fluid model of particle phase with a refined two-phase turbulence model.These equations are then applied to swirling gas-particle flows for analyzing the collection efficiency in cyclone separators.
基金supported by the National Key Project of Fundamental Research of China (Grant No.G1999-0222-07-08)the National Natural Science Foundation of China (Grant Nos.50736006 and 50606026)the Foundation of State Key Laboratory of Engines,Tianjin University (Grant No.K2010-07)
文摘Turbulent dispersed multiphase flows,including gas-particle,gas-droplet and bubble-liquid flows,are widely encountered in various engineering facilities.Modeling of two-phase turbulence,in particular the dispersed phase turbulence,is the key problem in the Eulerian-Eulerian simulation of practical dispersed multiphase flows.Although different models were developed and used,the experimental validation shows that they cannot always give satisfactory prediction results.In this paper the present author give a detailed review of the unified second-order moment (USM),k-k p and nonlinear k-k p two-phase turbulence models,proposed by him.The derivation and closure of these models are described in detail and the experimental validation and application of these models are extensively discussed.
基金funded by the National Natural Science Foundation of China(Nos.51775161 and 51775158)。
文摘Considering the influence of hydrogen gas generated during electrochemical machining on the conductivity of electrolyte, a two-phase turbulent flow model is presented to describe the gas bubbles distribution.The k-e turbulent model is used to describe the electrolyte flow field.The Euler–Euler model based on viscous drag and pressure force is used to calculate the twodimensional distribution of gas volume fraction.A multi-physics coupling model of electric field,two-phase flow field and temperature field is established and solved by weak coupling iteration method.The numerical simulation results of gas volume fraction, temperature and conductivity in equilibrium state are discussed.The distributions of machining gap at different time are analyzed.The predicted results of the machining gap are consistent with the experimental results, and the maximum deviation between them is less than 50 lm.
基金Supported by the National Natural Science Foundation of China (No. 19872039).
文摘The Large-eddy simulation (LES) with two-way coupling is used to study bubble-liquid two-phase confined multiple jets discharged into a 2D channel.The LES results reveal the large-eddy vortex structures of both liquid flow and bubble motion,the shear-generated and bubble-induced liquid turbulence,and indicate much stronger bubble fluctuation than that of the liquid,the enhancement of liquid turbulence by bubbles.Both shear and bubble-liquid interaction are important for the liquid turbulence generation in the case studied.
基金supported by the National Key Project of Fundamental Research of China (Grant No. G1999-0222-07-08)the Projects of the National Natural Science Foundation of China (Grant Nos. 50736006 and 50606026)the Foundation of the State Key Laboratory of Engines, Tianjin University (Grant No. K-2010-07)
文摘Dense gas-particle flows are frequently encountered in fluidized beds,riser and downer reactors,pneumatic transport and the near-wall zone of dilute gas-particle flows.Particle-particle collision plays an important role in the behavior of two-phase flows.In this paper a USM-Q two-phase turbulence model for dense gas-particle flows is proposed to account for both two-phase turbulence and inter-particle collision.For two-fluid large-eddy simulation of gas-particle flows,the author proposed a unified second-order moment(USM) two-phase SGS stress model and a two-phase k-kp SGS energy-equation stress model.The proposed models can fully account for the interaction between the gas and particle SGS stresses.