期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Buckling Optimization of Curved Grid Stiffeners through the Level Set Based Density Method
1
作者 Zhuo Huang Ye Tian +2 位作者 Yifan Zhang Tielin Shi Qi Xia 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期711-733,共23页
Stiffened structures have great potential for improvingmechanical performance,and the study of their stability is of great interest.In this paper,the optimization of the critical buckling load factor for curved grid s... Stiffened structures have great potential for improvingmechanical performance,and the study of their stability is of great interest.In this paper,the optimization of the critical buckling load factor for curved grid stiffeners is solved by using the level set based density method,where the shape and cross section(including thickness and width)of the stiffeners can be optimized simultaneously.The grid stiffeners are a combination ofmany single stiffenerswhich are projected by the corresponding level set functions.The thickness and width of each stiffener are designed to be independent variables in the projection applied to each level set function.Besides,the path of each single stiffener is described by the zero iso-contour of the level set function.All the single stiffeners are combined together by using the p-norm method to obtain the stiffener grid.The proposed method is validated by several numerical examples to optimize the critical buckling load factor. 展开更多
关键词 STIFFENER buckling optimization shape and cross section level set based density
下载PDF
Buckling optimization of curvilinear fiber-reinforced composite structures using a parametric level set method
2
作者 Ye TIAN Tielin SHI Qi XIA 《Frontiers of Mechanical Engineering》 SCIE CSCD 2024年第1期149-160,共12页
Owing to their excellent performance and large design space,curvilinear fiber-reinforced composite structures have gained considerable attention in engineering fields such as aerospace and automobile.In addition to th... Owing to their excellent performance and large design space,curvilinear fiber-reinforced composite structures have gained considerable attention in engineering fields such as aerospace and automobile.In addition to the stiffness and strength of such structures,their stability also needs to be taken into account in the design.This study proposes a level-set-based optimization framework for maximizing the buckling load of curvilinear fiber-reinforced composite structures.In the proposed method,the contours of the level set function are used to represent fiber paths.For a composite laminate with a certain number of layers,one level set function is defined by radial basis functions and expansion coefficients for each layer.Furthermore,the fiber angle at an arbitrary point is the tangent orientation of the contour through this point.In the finite element of buckling,the stiffness and geometry matrices of an element are related to the fiber angle at the element centroid.This study considers the parallelism constraint for fiber paths.With the sensitivity calculation of the objective and constraint functions,the method of moving asymptotes is utilized to iteratively update all the expansion coefficients regarded as design variables.Two numerical examples under different boundary conditions are given to validate the proposed approach.Results show that the optimized curved fiber paths tend to be parallel and equidistant regardless of whether the composite laminates contain holes or not.Meanwhile,the buckling resistance of the final design is significantly improved. 展开更多
关键词 buckling optimization curvilinear fiber composite structure level set method manufacturing constraint
原文传递
Optimization of buckling load for laminated composite plates using adaptive Kriging-improved PSO:A novel hybrid intelligent method 被引量:2
3
作者 Behrooz Keshtegar Trung Nguyen-Thoi +1 位作者 Tam T.Truong Shun-Peng Zhu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第1期85-99,共15页
An effective hybrid optimization method is proposed by integrating an adaptive Kriging(A-Kriging)into an improved partial swarm optimization algorithm(IPSO)to give a so-called A-Kriging-IPSO for maximizing the bucklin... An effective hybrid optimization method is proposed by integrating an adaptive Kriging(A-Kriging)into an improved partial swarm optimization algorithm(IPSO)to give a so-called A-Kriging-IPSO for maximizing the buckling load of laminated composite plates(LCPs)under uniaxial and biaxial compressions.In this method,a novel iterative adaptive Kriging model,which is structured using two training sample sets as active and adaptive points,is utilized to directly predict the buckling load of the LCPs and to improve the efficiency of the optimization process.The active points are selected from the initial data set while the adaptive points are generated using the radial random-based convex samples.The cell-based smoothed discrete shear gap method(CS-DSG3)is employed to analyze the buckling behavior of the LCPs to provide the response of adaptive and input data sets.The buckling load of the LCPs is maximized by utilizing the IPSO algorithm.To demonstrate the efficiency and accuracy of the proposed methodology,the LCPs with different layers(2,3,4,and 10 layers),boundary conditions,aspect ratios and load patterns(biaxial and uniaxial loads)are investigated.The results obtained by proposed method are in good agreement with the literature results,but with less computational burden.By applying adaptive radial Kriging model,the accurate optimal resultsebased predictions of the buckling load are obtained for the studied LCPs. 展开更多
关键词 Adaptive kriging Laminated composite plates buckling optimization Smooth finite element methods Cell-based smoothed discrete shear gap method(CS-DSG3) Improved PSO
下载PDF
STACKING SEQUENCE OPTIMIZA-TION OF LAMINATED COMPOSITE CYLINDER SHELL FOR MAXIMAL BUCKLING LOAD 被引量:4
4
作者 TANG Qian LIAO Xiaoyun GAO Zhan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第4期31-34,共4页
A new optimization method for the optimization of stacking of composite glass fiber laminates is developed. The fiber orientation and angle of the layers of the cylindrical shells are sought considering the buckling l... A new optimization method for the optimization of stacking of composite glass fiber laminates is developed. The fiber orientation and angle of the layers of the cylindrical shells are sought considering the buckling load. The proposed optimization algorithm applies both finite element analysis and the mode-pursuing sampling (MPS)method. The algorithms suggest the optimal stacking sequence for achieving the maximal buckling load. The procedure is implemented by integrating ANSYS and MATLAB. The stacking sequence designing for the symmetric angle-ply three-layered and five-layered composite cylinder shells is presented to illustrate the optimization process, respectively. Compared with the genetic algorithms, the proposed optimization method is much faster and efficient for composite staking sequence plan. 展开更多
关键词 Composite Laminated cylindrical shell Stacking sequence optimization buckling load Sampling algorithms
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部