The post buckling strength of web plate of I section plate girders is considered to resist the shear force in many other countries code for design of steel structures,while it has not been considered in the Chinese ...The post buckling strength of web plate of I section plate girders is considered to resist the shear force in many other countries code for design of steel structures,while it has not been considered in the Chinese code GB J17-88.For the code revising,some important conclusions have been drawn through the theoretical analysis and experimental research of the post buckling strength of web plate of I section plate girders.展开更多
As the turbine blade size becomes larger for economic power production,the coupling effect between wind turbine and floating substructure becomes important in structural assessment.Due to unsteady turbulent wind envir...As the turbine blade size becomes larger for economic power production,the coupling effect between wind turbine and floating substructure becomes important in structural assessment.Due to unsteady turbulent wind environment and corresponding coupled substructure response,time-domain analysis is required by international electrotechnical commission and class societies.Even though there are a few numerical tools available for the time domain structural analysis based on conventional coupled motion analysis with wind turbine,the application of conventional time domain analysis is impractical and inefficient for structural engineers and hull designers to perform structural strength and fatigue assessment for the required large number of design load cases since it takes huge simulation time and computational resources.Present paper introduces an efficient time-domain structural analysis practically applicable to buckling and ultimate strength assessment.Present method is based on‘lodal’response analysis and pseudo-spectral stress synthesizing technique,which makes timedomain structural analysis efficient and practical enough to be performed even in personal computing system.Practical buckling assessment methodology is also introduced applicable to the time-domain structural analyses.For application of present method,a 15-MW floating offshore wind turbine platform designed for Korean offshore wind farm projects is applied.Based on full-blown time domain structural analysis for governing design load cases,buckling and ultimate strength assessments are performed for the extreme design environments,and the class rule provided by Korean Register is checked.展开更多
Thin cylindrical shell structures have wide variety of applications due to their favorable stiffness-to-mass ratio and under axial compressive loading,these shell structures fail by their buckling instability.Hence,th...Thin cylindrical shell structures have wide variety of applications due to their favorable stiffness-to-mass ratio and under axial compressive loading,these shell structures fail by their buckling instability.Hence,their load carrying capacity is decided by its buckling strength which in turn predominantly depends on the geometrical imperfections present on the shell structure.The main aim of the present study is to determine the more influential geometrical parameter out of two geometrical imperfection parameters namely,“the extent of imperfection present over a surface area”and its“amplitude”.To account for these geometrical parameters simultaneously,the imperfection pattern is assumed as a dent having the shape of extent of surface area as a nearly square.The side length of extent of surface area can be considered as proportional to extent of imperfection present over an area and the dent depth can be considered as proportional to amplitude of imperfections.For the present numerical study,FE models of thin short carbon steel perfect cylindrical shells with different sizes of dent are generated at 1/3rd and half the height of cylindrical shells and analyzed using ANSYS nonlinear FE buckling analysis.展开更多
文摘The post buckling strength of web plate of I section plate girders is considered to resist the shear force in many other countries code for design of steel structures,while it has not been considered in the Chinese code GB J17-88.For the code revising,some important conclusions have been drawn through the theoretical analysis and experimental research of the post buckling strength of web plate of I section plate girders.
基金Supported by the R&D Project of“Development of core technology for offshore green hydrogen to realize a carbon-neutral society”by the Korea Research Institute of Ships and Ocean Engineering(PES4360).
文摘As the turbine blade size becomes larger for economic power production,the coupling effect between wind turbine and floating substructure becomes important in structural assessment.Due to unsteady turbulent wind environment and corresponding coupled substructure response,time-domain analysis is required by international electrotechnical commission and class societies.Even though there are a few numerical tools available for the time domain structural analysis based on conventional coupled motion analysis with wind turbine,the application of conventional time domain analysis is impractical and inefficient for structural engineers and hull designers to perform structural strength and fatigue assessment for the required large number of design load cases since it takes huge simulation time and computational resources.Present paper introduces an efficient time-domain structural analysis practically applicable to buckling and ultimate strength assessment.Present method is based on‘lodal’response analysis and pseudo-spectral stress synthesizing technique,which makes timedomain structural analysis efficient and practical enough to be performed even in personal computing system.Practical buckling assessment methodology is also introduced applicable to the time-domain structural analyses.For application of present method,a 15-MW floating offshore wind turbine platform designed for Korean offshore wind farm projects is applied.Based on full-blown time domain structural analysis for governing design load cases,buckling and ultimate strength assessments are performed for the extreme design environments,and the class rule provided by Korean Register is checked.
文摘Thin cylindrical shell structures have wide variety of applications due to their favorable stiffness-to-mass ratio and under axial compressive loading,these shell structures fail by their buckling instability.Hence,their load carrying capacity is decided by its buckling strength which in turn predominantly depends on the geometrical imperfections present on the shell structure.The main aim of the present study is to determine the more influential geometrical parameter out of two geometrical imperfection parameters namely,“the extent of imperfection present over a surface area”and its“amplitude”.To account for these geometrical parameters simultaneously,the imperfection pattern is assumed as a dent having the shape of extent of surface area as a nearly square.The side length of extent of surface area can be considered as proportional to extent of imperfection present over an area and the dent depth can be considered as proportional to amplitude of imperfections.For the present numerical study,FE models of thin short carbon steel perfect cylindrical shells with different sizes of dent are generated at 1/3rd and half the height of cylindrical shells and analyzed using ANSYS nonlinear FE buckling analysis.