The water-drop-shaped pressure hull has a good streamline,which has good application prospect in the underwater observatory.Therefore,this study conducted analytical,experimental and numerical investigation of the buc...The water-drop-shaped pressure hull has a good streamline,which has good application prospect in the underwater observatory.Therefore,this study conducted analytical,experimental and numerical investigation of the buckling properties of water-drop-shaped pressure hulls under hydrostatic pressure.A water-drop experiment was conducted to design water-drop-shaped pressure hulls with various shape indices.The critical loads for the water-drop-shaped pressure hulls were resolved by using Mushtari’s formula.Several numerical simulations including linear buckling analysis and nonlinear buckling analysis including eigenmode imperfections were performed.The results indicated that the critical loads resolved by Mushtari's formula were in good agreement with the linear buckling loads from the numerical simulations.This formula can be extended to estimate the buckling capacity of water-drop-shaped pressure hulls.In addition,three groups of pressure hulls were fabricated by using stereolithography,a rapid prototyping technique.Subsequently,three groups of the pressure hulls were subjected to ultrasonic measurements,optical scanning,hydrostatic testing and numerical analysis.The experimental results were consistent with the numerical results.The results indicate that the sharp end of the water-drop-shaped pressure hulls exhibited instability compared with the blunt end.This paper provides a new solution to the limitations of experimental studies on the water-drop-shaped pressure hulls as well as a new configuration and evaluation method for underwater observatories.展开更多
A non-probabilistic reliability topology optimization method is proposed based on the aggregation function and matrix multiplication.The expression of the geometric stiffness matrix is derived,the finite element linea...A non-probabilistic reliability topology optimization method is proposed based on the aggregation function and matrix multiplication.The expression of the geometric stiffness matrix is derived,the finite element linear buckling analysis is conducted,and the sensitivity solution of the linear buckling factor is achieved.For a specific problem in linear buckling topology optimization,a Heaviside projection function based on the exponential smooth growth is developed to eliminate the gray cells.The aggregation function method is used to consider the high-order eigenvalues,so as to obtain continuous sensitivity information and refined structural design.With cyclic matrix programming,a fast topology optimization method that can be used to efficiently obtain the unit assembly and sensitivity solution is conducted.To maximize the buckling load,under the constraint of the given buckling load,two types of topological optimization columns are constructed.The variable density method is used to achieve the topology optimization solution along with the moving asymptote optimization algorithm.The vertex method and the matching point method are used to carry out an uncertainty propagation analysis,and the non-probability reliability topology optimization method considering buckling responses is developed based on the transformation of non-probability reliability indices based on the characteristic distance.Finally,the differences in the structural topology optimization under different reliability degrees are illustrated by examples.展开更多
This study presents the Chebyshev polynomials-based Ritz method to examine the thermal buckling and free vibration characteristics of metal foam beams.The analyses include three models for porosity distribution and tw...This study presents the Chebyshev polynomials-based Ritz method to examine the thermal buckling and free vibration characteristics of metal foam beams.The analyses include three models for porosity distribution and two scenarios for thermal distribution.The material properties are assessed under two conditions,i.e.,temperature dependence and temperature independence.The theoretical framework for the beams is based on the higher-order shear deformation theory,which incorporates shear deformations with higher-order polynomials.The governing equations are established from the Lagrange equations,and the beam displacement fields are approximated by the Chebyshev polynomials.Numerical simulations are performed to evaluate the effects of thermal load,slenderness,boundary condition(BC),and porosity distribution on the buckling and vibration behaviors of metal foam beams.The findings highlight the significant influence of temperature-dependent(TD)material properties on metal foam beams'buckling and vibration responses.展开更多
Natural fibers have been extensively researched as reinforcement materials in polymers on account of their environmental and economic advantages in comparison with synthetic fibers in the recent years.Bamboo fibers ar...Natural fibers have been extensively researched as reinforcement materials in polymers on account of their environmental and economic advantages in comparison with synthetic fibers in the recent years.Bamboo fibers are renowned for their good mechanical properties,abundance,and short cycle growth.As beams are one of the fundamental structural components and are susceptible to mechanical loads in engineering applications,this paper performs a study on the free vibration and buckling responses of bamboo fiber reinforced composite(BFRC)beams on the elastic foundation.Three different functionally graded(FG)layouts and a uniform one are the considered distributions for unidirectional long bamboo fibers across the thickness.The elastic properties of the composite are determined with the law of mixture.Employing Hamilton’s principle,the governing equations of motion are obtained.The generalized differential quadrature method(GDQM)is then applied to the equations to obtain the results.The achieved outcomes exhibit that the natural frequency and buckling load values vary as the fiber volume fractions and distributions,elastic foundation stiffness values,and boundary conditions(BCs)and slenderness ratio of the beam change.Furthermore,a comparative study is conducted between the derived analysis outcomes for BFRC and homogenous polymer beams to examine the effectiveness of bamboo fibers as reinforcement materials,demonstrating the significant enhancements in both vibration and buckling responses,with the exception of natural frequencies for cantilever beams on the Pasternak foundation with the FG-◇fiber distribution.Eventually,the obtained analysis results of BFRC beams are also compared with those for carbon nanotube reinforced composite(CNTRC)beams found in the literature,indicating that the buckling loads and natural frequencies of BFRC beams are lower than those of CNTRC beams.展开更多
Stiffened structures have great potential for improvingmechanical performance,and the study of their stability is of great interest.In this paper,the optimization of the critical buckling load factor for curved grid s...Stiffened structures have great potential for improvingmechanical performance,and the study of their stability is of great interest.In this paper,the optimization of the critical buckling load factor for curved grid stiffeners is solved by using the level set based density method,where the shape and cross section(including thickness and width)of the stiffeners can be optimized simultaneously.The grid stiffeners are a combination ofmany single stiffenerswhich are projected by the corresponding level set functions.The thickness and width of each stiffener are designed to be independent variables in the projection applied to each level set function.Besides,the path of each single stiffener is described by the zero iso-contour of the level set function.All the single stiffeners are combined together by using the p-norm method to obtain the stiffener grid.The proposed method is validated by several numerical examples to optimize the critical buckling load factor.展开更多
AIM:To evaluate scleral buckling(SB)surgery using a noncontact wide-field viewing system and 23-gauge intraocular illumination for the treatment of rhegmatogenous retinal detachment in silicone oil(SO)-filled eyes.MET...AIM:To evaluate scleral buckling(SB)surgery using a noncontact wide-field viewing system and 23-gauge intraocular illumination for the treatment of rhegmatogenous retinal detachment in silicone oil(SO)-filled eyes.METHODS:Totally 9 patients(9 eyes)with retinal detachment in SO-filled eyes were retrospectively analyzed.All patients underwent non-contact wide-field viewing system-assisted buckling surgery with 23-gauge intraocular illumination.SO was removed at an appropriate time based on recovery.The patients were followed up for at least 3mo after SO removal.Retinal reattachment,complications,visual acuity and intraocular pressure(IOP)before and after surgery were observed.RESULTS:Patients were followed up for a mean of 8.22mo(3-22mo)after SO removal.All patients had retinal reattachment.At the final follow-up,visual acuity showed improvement for 8 patients,and no change for 1 patient.The IOP was high in 3 patients before surgery,but it stabilized after treatment;it was not affected in the other patients.None of the patients had infections,hemorrhage,anterior ischemia,or any other complication.CONCLUSION:This new non-contact wide-field viewing system-assisted SB surgery with 23-gauge intraocular illumination is effective and safe for retinal detachment in SO-filled eyes.展开更多
The wet multi-disc clutches are extensively used in various transmission systems,withone of the most prevalent failure modes being the buckling deformation of friction components.Animproved Hilbert-Huang transform met...The wet multi-disc clutches are extensively used in various transmission systems,withone of the most prevalent failure modes being the buckling deformation of friction components.Animproved Hilbert-Huang transform method(IHHT)is proposed to address the limitations of tradi-tional time-domain vibration analyses,such as low accuracy and mode mixing.This paper first clas-sifies the buckling degree of the friction components.Next,wavelet packet transform(WPT)isapplied to the vibration signals of different buckling plates to partition them into distinct fre-quency bands.Then,the instantaneous features are extracted by empirical mode decomposition(EMD)and Hilbert transform(HT)to discarding extraneous intrinsic mode function(IMF)com-ponents.Comparative analyses of Hilbert spectral entropy and time-domain features confirm theenhanced precision of IHHT under specific classifiers,which is better than traditional methods.展开更多
●AIM:To evaluate the effectiveness and safety of scleral buckling for the treatment of rhegmatogenous retinal detachment(RRD)using a novel foldable capsular buckle(FCB).●METHODS:This was a series of case observation...●AIM:To evaluate the effectiveness and safety of scleral buckling for the treatment of rhegmatogenous retinal detachment(RRD)using a novel foldable capsular buckle(FCB).●METHODS:This was a series of case observation studies.Eighteen patients(18 eyes)who visited our ophthalmology department between August 2020 and August 2022 and were treated for RRD with scleral buckling using FCB were included.The procedure was similar to conventional scleral buckling,while a balloon-like FCB was placed onto the retinal break with balanced salt solution filling for a broad,external indentation instead of the silicone buckle.The retinal reattachment rate,best corrected visual acuity(BCVA),intraocular pressure(IOP),refractive dioptre and astigmatism degree,and complications were evaluated and recorded.●RESULTS:There were 7 males and 11 females aged 19-58y.The average time course of RRD was 12d,ranging from 7-20d.The retinal break was located in the superior quadrants in 8 eyes and in the inferior quadrants in 10 eyes,with macula-off detachments in 12 eyes.The patients were followed-up for at least 6mo.The final retinal reattachment rate was 100%.The BCVA was significantly improved compared with the baseline(P<0.05).There was no significant change in refractive dioptre or astigmatism degree at each follow-up(all P>0.05).Three patients had transiently high IOPs within one week after surgery.Mild diplopia occurred in 5 patients after surgery and then disappeared after the balloon fluid was removed.●CONCLUSION:The success rate of FCB scleral buckling for RRD is satisfactory.This procedure can be expected to be applied in new,uncomplicated cases of RRD.展开更多
The equilibrium equations and the functional for tubing buckling in arbitrary straight wells are derived. The entire buckling process of tubing in deviated wells is analyzed for the first time by utilizing the finite ...The equilibrium equations and the functional for tubing buckling in arbitrary straight wells are derived. The entire buckling process of tubing in deviated wells is analyzed for the first time by utilizing the finite element method. The effects of gravity and torques on the buckling are included in the analyses and the calculated results are well compared with existing solutions. It is shown that the buckling only occurs at the lower portion of the tubing where the axial load is the largest, and the contact force of the well, the bending moment of the tubing and the buckling displacement of this portion vary periodically. The buckling spreads upwards from the bit with the increase of axial load. There is no buckling at the upper portion of the tubing where the bending moment is zero. And the contact force of this section increases only slightly with the increase of the axial load. With the increase of the deviation angle, the length of buckling portion and buckling displacement amplitude decrease, the contact force increases with the increase of load at the upper portion and its amplitude decreases at the lower buckling section, the bending moment remains zero at the upper portion and its amplitude decreases at the lower buckling portion. The buckling displacement increases with the increase of the torque, but the increment is very small.展开更多
In order to predict the buckling of stiffeners in the press bend forming of the integral panel,a method for solving the critical buckling load of the stiffeners in press bend forming process was proposed based on ener...In order to predict the buckling of stiffeners in the press bend forming of the integral panel,a method for solving the critical buckling load of the stiffeners in press bend forming process was proposed based on energy method,elastic-plastic mechanics and numerical analysis.Bend to buckle experiments were carried out on the designed press bend dies.It is found that the predicted results based on the proposed method agree well with the experimental results.With the proposed method,the buckling of the stiffeners in press bend forming of the aluminum alloy integral panels with high-stiffener can be predicted reasonably.展开更多
Buckling of a woven fabric is analyzed in this paper when it is subjected to a simple shear in warp direction.The equation to determine the buckling direction (buckling wave direction) is obtained and it is found that...Buckling of a woven fabric is analyzed in this paper when it is subjected to a simple shear in warp direction.The equation to determine the buckling direction (buckling wave direction) is obtained and it is found that the buckling direction is related to the critical amount of shear.It is shown that the out-of-plane buckling of fabric is possible and only a flexural buckling mode can exist.The buckling condition for flexural mode is obtained and the curve for that is illustrated.展开更多
Substrate straining test was carried out to study the buckling pattern of TiO2 nanotube film. The results show that the tensile strains of buckling occurrence of TiO2 nanotube films without annealing, with 250 ℃ anne...Substrate straining test was carried out to study the buckling pattern of TiO2 nanotube film. The results show that the tensile strains of buckling occurrence of TiO2 nanotube films without annealing, with 250 ℃ annealing and with 400 ℃ annealing are 2.5%, 8.9% and 7.8%, respectively, which indicates the modifying effects of temperature annealing. Through the SEM observation, the critical buckling stresses of TiO2 nanotube films without annealing, with 250 ℃ annealing and with 400 ℃ annealing can be estimated as 180.4, 410.2 and 619.5 MPa, respectively. The critical buckling stress of TiO2 nanotube films with 250 ℃ annealing from AFM observation is estimated as 470.2 MPa, which indicates good agreement with the critical buckling stress from SEM observation. The true stress and the critical energy release rate of TiO2 nanotube film with 250 ℃ annealing are given as 840.3 MPa and 77.2 J/m2, respectively. Excellent agreement of the critical energy release rate of TiO2 nanotube film with 250 ℃ annealing in terms of buckling perspective and crack perspective is obtained.展开更多
Surface notches lower the stiffness of laminated strips, so they lower the buckling loads of the laminated strips, too. In this paper a new method is proposed to predict the buckling loads of the laminated strips with...Surface notches lower the stiffness of laminated strips, so they lower the buckling loads of the laminated strips, too. In this paper a new method is proposed to predict the buckling loads of the laminated strips with a surface notch. The theoretical and experimental results show that the buckling loads decrease as the depth or width of the surface notches increase; when the stacking sequence of the laminated strips is [0°/0°/+ θ/-θ/0°/0°/+θ/-θ] s , the buckling load decrease as θ increases. It proves that the method is reliable and significant.展开更多
To investigate the buckling and post buckling behaviors of elastic thin plate under frictionless unilateral restraint, enduring the coupling action of lognitudinal and transverse loads, the principle of minimum poten...To investigate the buckling and post buckling behaviors of elastic thin plate under frictionless unilateral restraint, enduring the coupling action of lognitudinal and transverse loads, the principle of minimum potential energy and variational method are used and series functions with unknown coefficients are taken as trial functions of functional to solve the large deflection and non linear bending problem of a thin plate and find relation curves between deflection of plate and loads. The proposed method can capture the buckling and post buckling behaviors of a thin plate in different geometrical and load boundary conditions. The analysis confirms that there occur snap and bifurcation behaviors in the post buckling stage of the plate. And these results show the validity of the variational method for solving buckling problems of thin plate.展开更多
High load-bearing efficiency is one of the advantages of biological structures after the evolution of billions of years. Biomimicking from nature may offer the potential for lightweight design. In the viewpoint ofrnec...High load-bearing efficiency is one of the advantages of biological structures after the evolution of billions of years. Biomimicking from nature may offer the potential for lightweight design. In the viewpoint ofrnechanics properties, the culm of bamboo comprises of two types of cells and the number of the vascular bundles takes a gradient of distribution. A three-point bending test was carried out to measure the elastic modulus. Results show that the elastic modulus of bamboo decreases gradually from the periphery towards the centre. Based on the structural characteristics of bamboo, a bionic cylindrical structure was designed to mimic the gradient distribution of vascular bundles and parenchyma cells. The buckling resistance of the bionic structure was compared with that of a traditional shell of equal mass under axial pressure by finite element simulations. Results show that the load-bearing capacity of bionic shell is increased by 124.8%. The buckling mode of bionic structure is global buckling while that of the conventional shell is local buckling.展开更多
Pipes inevitably encounter high ambient pressure and bending moment during the deepwater pipe-laying process,which can lead to elliptical buckling and even deterioration failure.For the safety of pipe-laying operation...Pipes inevitably encounter high ambient pressure and bending moment during the deepwater pipe-laying process,which can lead to elliptical buckling and even deterioration failure.For the safety of pipe-laying operation,available formulas for the pipe stability are established on the basis of the assumption of uniform deformation along the tube length and symmetrical buckling.This method can predict the nonlinear response of elliptical collapse of steel circular tubes for different ratios of diameter to thickness(D/t)under pure bending or combined bending and external pressure.In these formulas,the strain-displacement relationship is deduced from the nonlinear ring theory,and the Ramberg-Osgood constitutive model is applied to simulate the inelastic material behavior.Meanwhile,the principle of virtual work is adopted to derive the equilibrium equations.A set of equations is solved by the Newton-Raphson method,and the iterative scheme contains nested iteration for the constitutive relation.In order to check the effectiveness of this theoretical method,illustrative examples are presented in this paper.Besides,the numerical simulation is carried out by use of ANSYS.A comparison of the results shows that the theoretical method can provide reasonable prediction for engineering practice.展开更多
The dynamic buckling of elasto-plastic cylindrical shells under axial fluid-solid impact is investigated theoretically. A simplified liquid- gas- structure model is given to approximately imitate the problem. The basi...The dynamic buckling of elasto-plastic cylindrical shells under axial fluid-solid impact is investigated theoretically. A simplified liquid- gas- structure model is given to approximately imitate the problem. The basic equation of the structure is derived from a minimum principle in dynamics of elasto-plastic continua at finite deformation, and the flow theory of plasticity is employed. The liquid is incompressible and the gas is compressed adiabatically. A number of numerical results are presented and the characteristics of the buckling behavior under fluid-solid impact are illustrated.展开更多
Buckling restrained braces (BRBs) have been widely applied in seismic mitigation since they were introduced in the 1970s. However, traditional BRBs have several disadvantages caused by using a steel tube to envelope...Buckling restrained braces (BRBs) have been widely applied in seismic mitigation since they were introduced in the 1970s. However, traditional BRBs have several disadvantages caused by using a steel tube to envelope the mortar to prevent the core plate from buckling, such as: complex interfaces between the materials used, uncertain precision, and time consumption during the manufacturing processes. In this study, a new device called the multi-curve buckling restrained brace (MC-BRB) is proposed to overcome these disadvantages. The new device consists of a core plate with multiple neck portions assembled to form multiple energy dissipation segments, and the enlarged segment, lateral support elements and constraining elements to prevent the BRB from buckling. The enlarged segment located in the middle of the core plate can be welded to the lateral support and constraining elements to increase buckling resistance and to prevent them from sliding during earthquakes. Component tests and a series of shaking table tests on a full-scale steel structure equipped with MC-BRBs were carried out to investigate the behavior and capability of this new BRB design for seismic mitigation. The experimental results illustrate that the MC-BRB possesses a stable mechanical behavior under cyclic loadings and provides good protection to structures during earthquakes. Also, a mathematical model has been developed to simulate the mechanical characteristics of BRBs.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52071160 and 52071203)the 333-Key-Industry Talent Project of Jiangsu Scientific Committee(Grant No.JTO 2022-21).
文摘The water-drop-shaped pressure hull has a good streamline,which has good application prospect in the underwater observatory.Therefore,this study conducted analytical,experimental and numerical investigation of the buckling properties of water-drop-shaped pressure hulls under hydrostatic pressure.A water-drop experiment was conducted to design water-drop-shaped pressure hulls with various shape indices.The critical loads for the water-drop-shaped pressure hulls were resolved by using Mushtari’s formula.Several numerical simulations including linear buckling analysis and nonlinear buckling analysis including eigenmode imperfections were performed.The results indicated that the critical loads resolved by Mushtari's formula were in good agreement with the linear buckling loads from the numerical simulations.This formula can be extended to estimate the buckling capacity of water-drop-shaped pressure hulls.In addition,three groups of pressure hulls were fabricated by using stereolithography,a rapid prototyping technique.Subsequently,three groups of the pressure hulls were subjected to ultrasonic measurements,optical scanning,hydrostatic testing and numerical analysis.The experimental results were consistent with the numerical results.The results indicate that the sharp end of the water-drop-shaped pressure hulls exhibited instability compared with the blunt end.This paper provides a new solution to the limitations of experimental studies on the water-drop-shaped pressure hulls as well as a new configuration and evaluation method for underwater observatories.
基金Project supported by the National Natural Science Foundation of China (Nos.12072007,12072006,12132001,and 52192632)the Ningbo Natural Science Foundation of Zhejiang Province of China (No.202003N4018)the Defense Industrial Technology Development Program of China (Nos.JCKY2019205A006,JCKY2019203A003,and JCKY2021204A002)。
文摘A non-probabilistic reliability topology optimization method is proposed based on the aggregation function and matrix multiplication.The expression of the geometric stiffness matrix is derived,the finite element linear buckling analysis is conducted,and the sensitivity solution of the linear buckling factor is achieved.For a specific problem in linear buckling topology optimization,a Heaviside projection function based on the exponential smooth growth is developed to eliminate the gray cells.The aggregation function method is used to consider the high-order eigenvalues,so as to obtain continuous sensitivity information and refined structural design.With cyclic matrix programming,a fast topology optimization method that can be used to efficiently obtain the unit assembly and sensitivity solution is conducted.To maximize the buckling load,under the constraint of the given buckling load,two types of topological optimization columns are constructed.The variable density method is used to achieve the topology optimization solution along with the moving asymptote optimization algorithm.The vertex method and the matching point method are used to carry out an uncertainty propagation analysis,and the non-probability reliability topology optimization method considering buckling responses is developed based on the transformation of non-probability reliability indices based on the characteristic distance.Finally,the differences in the structural topology optimization under different reliability degrees are illustrated by examples.
文摘This study presents the Chebyshev polynomials-based Ritz method to examine the thermal buckling and free vibration characteristics of metal foam beams.The analyses include three models for porosity distribution and two scenarios for thermal distribution.The material properties are assessed under two conditions,i.e.,temperature dependence and temperature independence.The theoretical framework for the beams is based on the higher-order shear deformation theory,which incorporates shear deformations with higher-order polynomials.The governing equations are established from the Lagrange equations,and the beam displacement fields are approximated by the Chebyshev polynomials.Numerical simulations are performed to evaluate the effects of thermal load,slenderness,boundary condition(BC),and porosity distribution on the buckling and vibration behaviors of metal foam beams.The findings highlight the significant influence of temperature-dependent(TD)material properties on metal foam beams'buckling and vibration responses.
文摘Natural fibers have been extensively researched as reinforcement materials in polymers on account of their environmental and economic advantages in comparison with synthetic fibers in the recent years.Bamboo fibers are renowned for their good mechanical properties,abundance,and short cycle growth.As beams are one of the fundamental structural components and are susceptible to mechanical loads in engineering applications,this paper performs a study on the free vibration and buckling responses of bamboo fiber reinforced composite(BFRC)beams on the elastic foundation.Three different functionally graded(FG)layouts and a uniform one are the considered distributions for unidirectional long bamboo fibers across the thickness.The elastic properties of the composite are determined with the law of mixture.Employing Hamilton’s principle,the governing equations of motion are obtained.The generalized differential quadrature method(GDQM)is then applied to the equations to obtain the results.The achieved outcomes exhibit that the natural frequency and buckling load values vary as the fiber volume fractions and distributions,elastic foundation stiffness values,and boundary conditions(BCs)and slenderness ratio of the beam change.Furthermore,a comparative study is conducted between the derived analysis outcomes for BFRC and homogenous polymer beams to examine the effectiveness of bamboo fibers as reinforcement materials,demonstrating the significant enhancements in both vibration and buckling responses,with the exception of natural frequencies for cantilever beams on the Pasternak foundation with the FG-◇fiber distribution.Eventually,the obtained analysis results of BFRC beams are also compared with those for carbon nanotube reinforced composite(CNTRC)beams found in the literature,indicating that the buckling loads and natural frequencies of BFRC beams are lower than those of CNTRC beams.
基金supported by the National Natural Science Foundation of China(Grant Nos.51975227 and 12272144).
文摘Stiffened structures have great potential for improvingmechanical performance,and the study of their stability is of great interest.In this paper,the optimization of the critical buckling load factor for curved grid stiffeners is solved by using the level set based density method,where the shape and cross section(including thickness and width)of the stiffeners can be optimized simultaneously.The grid stiffeners are a combination ofmany single stiffenerswhich are projected by the corresponding level set functions.The thickness and width of each stiffener are designed to be independent variables in the projection applied to each level set function.Besides,the path of each single stiffener is described by the zero iso-contour of the level set function.All the single stiffeners are combined together by using the p-norm method to obtain the stiffener grid.The proposed method is validated by several numerical examples to optimize the critical buckling load factor.
基金Supported by National Natural Science Foundation of China(No.81700884)Scientific Research Foundation of National Health and Health Commission(No.WKJ-ZJ-2037)+1 种基金Zhejiang Public Welfare Technology Application Project(No.LGF21H120005)Science and Technology Project of Wenzhou(No.Y20190649).
文摘AIM:To evaluate scleral buckling(SB)surgery using a noncontact wide-field viewing system and 23-gauge intraocular illumination for the treatment of rhegmatogenous retinal detachment in silicone oil(SO)-filled eyes.METHODS:Totally 9 patients(9 eyes)with retinal detachment in SO-filled eyes were retrospectively analyzed.All patients underwent non-contact wide-field viewing system-assisted buckling surgery with 23-gauge intraocular illumination.SO was removed at an appropriate time based on recovery.The patients were followed up for at least 3mo after SO removal.Retinal reattachment,complications,visual acuity and intraocular pressure(IOP)before and after surgery were observed.RESULTS:Patients were followed up for a mean of 8.22mo(3-22mo)after SO removal.All patients had retinal reattachment.At the final follow-up,visual acuity showed improvement for 8 patients,and no change for 1 patient.The IOP was high in 3 patients before surgery,but it stabilized after treatment;it was not affected in the other patients.None of the patients had infections,hemorrhage,anterior ischemia,or any other complication.CONCLUSION:This new non-contact wide-field viewing system-assisted SB surgery with 23-gauge intraocular illumination is effective and safe for retinal detachment in SO-filled eyes.
文摘The wet multi-disc clutches are extensively used in various transmission systems,withone of the most prevalent failure modes being the buckling deformation of friction components.Animproved Hilbert-Huang transform method(IHHT)is proposed to address the limitations of tradi-tional time-domain vibration analyses,such as low accuracy and mode mixing.This paper first clas-sifies the buckling degree of the friction components.Next,wavelet packet transform(WPT)isapplied to the vibration signals of different buckling plates to partition them into distinct fre-quency bands.Then,the instantaneous features are extracted by empirical mode decomposition(EMD)and Hilbert transform(HT)to discarding extraneous intrinsic mode function(IMF)com-ponents.Comparative analyses of Hilbert spectral entropy and time-domain features confirm theenhanced precision of IHHT under specific classifiers,which is better than traditional methods.
基金Supported by Xuzhou Health Outstanding Talents Project(No.XWJC001)Critical Special Project for Social Development of Xuzhou(No.KC21153)+1 种基金Science and Technology Innovation Project of Xuzhou Municipal Health Commission(No.XWKYHT20230039)Applied Basic Research Project of Xuzhou(No.KC23016).
文摘●AIM:To evaluate the effectiveness and safety of scleral buckling for the treatment of rhegmatogenous retinal detachment(RRD)using a novel foldable capsular buckle(FCB).●METHODS:This was a series of case observation studies.Eighteen patients(18 eyes)who visited our ophthalmology department between August 2020 and August 2022 and were treated for RRD with scleral buckling using FCB were included.The procedure was similar to conventional scleral buckling,while a balloon-like FCB was placed onto the retinal break with balanced salt solution filling for a broad,external indentation instead of the silicone buckle.The retinal reattachment rate,best corrected visual acuity(BCVA),intraocular pressure(IOP),refractive dioptre and astigmatism degree,and complications were evaluated and recorded.●RESULTS:There were 7 males and 11 females aged 19-58y.The average time course of RRD was 12d,ranging from 7-20d.The retinal break was located in the superior quadrants in 8 eyes and in the inferior quadrants in 10 eyes,with macula-off detachments in 12 eyes.The patients were followed-up for at least 6mo.The final retinal reattachment rate was 100%.The BCVA was significantly improved compared with the baseline(P<0.05).There was no significant change in refractive dioptre or astigmatism degree at each follow-up(all P>0.05).Three patients had transiently high IOPs within one week after surgery.Mild diplopia occurred in 5 patients after surgery and then disappeared after the balloon fluid was removed.●CONCLUSION:The success rate of FCB scleral buckling for RRD is satisfactory.This procedure can be expected to be applied in new,uncomplicated cases of RRD.
文摘The equilibrium equations and the functional for tubing buckling in arbitrary straight wells are derived. The entire buckling process of tubing in deviated wells is analyzed for the first time by utilizing the finite element method. The effects of gravity and torques on the buckling are included in the analyses and the calculated results are well compared with existing solutions. It is shown that the buckling only occurs at the lower portion of the tubing where the axial load is the largest, and the contact force of the well, the bending moment of the tubing and the buckling displacement of this portion vary periodically. The buckling spreads upwards from the bit with the increase of axial load. There is no buckling at the upper portion of the tubing where the bending moment is zero. And the contact force of this section increases only slightly with the increase of the axial load. With the increase of the deviation angle, the length of buckling portion and buckling displacement amplitude decrease, the contact force increases with the increase of load at the upper portion and its amplitude decreases at the lower buckling section, the bending moment remains zero at the upper portion and its amplitude decreases at the lower buckling portion. The buckling displacement increases with the increase of the torque, but the increment is very small.
基金Project (51005010) supported by the National Natural Science Foundation of ChinaProject (20091102110021) supported by the Specialized Research Fund for the Doctoral Program of High Education of China
文摘In order to predict the buckling of stiffeners in the press bend forming of the integral panel,a method for solving the critical buckling load of the stiffeners in press bend forming process was proposed based on energy method,elastic-plastic mechanics and numerical analysis.Bend to buckle experiments were carried out on the designed press bend dies.It is found that the predicted results based on the proposed method agree well with the experimental results.With the proposed method,the buckling of the stiffeners in press bend forming of the aluminum alloy integral panels with high-stiffener can be predicted reasonably.
基金Supported by National Natural Science Foundation of China (1100107610926171+4 种基金10926172)Project of Henan Provincial Department of Sciences and Technology (092300410143)NSF of Henan Provincial Education Department (2009A1100102010A110008)Foundation of Young Backbone Teachers of Henan Normal University
基金Supported by National Natural Science Foundation of China!(No.1 9772 0 32 )
文摘Buckling of a woven fabric is analyzed in this paper when it is subjected to a simple shear in warp direction.The equation to determine the buckling direction (buckling wave direction) is obtained and it is found that the buckling direction is related to the critical amount of shear.It is shown that the out-of-plane buckling of fabric is possible and only a flexural buckling mode can exist.The buckling condition for flexural mode is obtained and the curve for that is illustrated.
基金Project (51274248) supported by the National Natural Science Foundation of ChinaProject (20110946Z) supported by State Key Laboratory of Powder Metallurgy, China
文摘Substrate straining test was carried out to study the buckling pattern of TiO2 nanotube film. The results show that the tensile strains of buckling occurrence of TiO2 nanotube films without annealing, with 250 ℃ annealing and with 400 ℃ annealing are 2.5%, 8.9% and 7.8%, respectively, which indicates the modifying effects of temperature annealing. Through the SEM observation, the critical buckling stresses of TiO2 nanotube films without annealing, with 250 ℃ annealing and with 400 ℃ annealing can be estimated as 180.4, 410.2 and 619.5 MPa, respectively. The critical buckling stress of TiO2 nanotube films with 250 ℃ annealing from AFM observation is estimated as 470.2 MPa, which indicates good agreement with the critical buckling stress from SEM observation. The true stress and the critical energy release rate of TiO2 nanotube film with 250 ℃ annealing are given as 840.3 MPa and 77.2 J/m2, respectively. Excellent agreement of the critical energy release rate of TiO2 nanotube film with 250 ℃ annealing in terms of buckling perspective and crack perspective is obtained.
文摘Surface notches lower the stiffness of laminated strips, so they lower the buckling loads of the laminated strips, too. In this paper a new method is proposed to predict the buckling loads of the laminated strips with a surface notch. The theoretical and experimental results show that the buckling loads decrease as the depth or width of the surface notches increase; when the stacking sequence of the laminated strips is [0°/0°/+ θ/-θ/0°/0°/+θ/-θ] s , the buckling load decrease as θ increases. It proves that the method is reliable and significant.
文摘To investigate the buckling and post buckling behaviors of elastic thin plate under frictionless unilateral restraint, enduring the coupling action of lognitudinal and transverse loads, the principle of minimum potential energy and variational method are used and series functions with unknown coefficients are taken as trial functions of functional to solve the large deflection and non linear bending problem of a thin plate and find relation curves between deflection of plate and loads. The proposed method can capture the buckling and post buckling behaviors of a thin plate in different geometrical and load boundary conditions. The analysis confirms that there occur snap and bifurcation behaviors in the post buckling stage of the plate. And these results show the validity of the variational method for solving buckling problems of thin plate.
基金National Natural Science Foundation of China (Grant No. 50575008)the Aeronautical Science Foundation of China (Grant No. 05B01004)
文摘High load-bearing efficiency is one of the advantages of biological structures after the evolution of billions of years. Biomimicking from nature may offer the potential for lightweight design. In the viewpoint ofrnechanics properties, the culm of bamboo comprises of two types of cells and the number of the vascular bundles takes a gradient of distribution. A three-point bending test was carried out to measure the elastic modulus. Results show that the elastic modulus of bamboo decreases gradually from the periphery towards the centre. Based on the structural characteristics of bamboo, a bionic cylindrical structure was designed to mimic the gradient distribution of vascular bundles and parenchyma cells. The buckling resistance of the bionic structure was compared with that of a traditional shell of equal mass under axial pressure by finite element simulations. Results show that the load-bearing capacity of bionic shell is increased by 124.8%. The buckling mode of bionic structure is global buckling while that of the conventional shell is local buckling.
基金supported by the National High Technology Research and Development Programof China(863 Program,Grant No.2006AA09A105)
文摘Pipes inevitably encounter high ambient pressure and bending moment during the deepwater pipe-laying process,which can lead to elliptical buckling and even deterioration failure.For the safety of pipe-laying operation,available formulas for the pipe stability are established on the basis of the assumption of uniform deformation along the tube length and symmetrical buckling.This method can predict the nonlinear response of elliptical collapse of steel circular tubes for different ratios of diameter to thickness(D/t)under pure bending or combined bending and external pressure.In these formulas,the strain-displacement relationship is deduced from the nonlinear ring theory,and the Ramberg-Osgood constitutive model is applied to simulate the inelastic material behavior.Meanwhile,the principle of virtual work is adopted to derive the equilibrium equations.A set of equations is solved by the Newton-Raphson method,and the iterative scheme contains nested iteration for the constitutive relation.In order to check the effectiveness of this theoretical method,illustrative examples are presented in this paper.Besides,the numerical simulation is carried out by use of ANSYS.A comparison of the results shows that the theoretical method can provide reasonable prediction for engineering practice.
文摘The dynamic buckling of elasto-plastic cylindrical shells under axial fluid-solid impact is investigated theoretically. A simplified liquid- gas- structure model is given to approximately imitate the problem. The basic equation of the structure is derived from a minimum principle in dynamics of elasto-plastic continua at finite deformation, and the flow theory of plasticity is employed. The liquid is incompressible and the gas is compressed adiabatically. A number of numerical results are presented and the characteristics of the buckling behavior under fluid-solid impact are illustrated.
基金Science Council in Chinese Taipei Under Grant No.NSC 94-2211-E-035-015
文摘Buckling restrained braces (BRBs) have been widely applied in seismic mitigation since they were introduced in the 1970s. However, traditional BRBs have several disadvantages caused by using a steel tube to envelope the mortar to prevent the core plate from buckling, such as: complex interfaces between the materials used, uncertain precision, and time consumption during the manufacturing processes. In this study, a new device called the multi-curve buckling restrained brace (MC-BRB) is proposed to overcome these disadvantages. The new device consists of a core plate with multiple neck portions assembled to form multiple energy dissipation segments, and the enlarged segment, lateral support elements and constraining elements to prevent the BRB from buckling. The enlarged segment located in the middle of the core plate can be welded to the lateral support and constraining elements to increase buckling resistance and to prevent them from sliding during earthquakes. Component tests and a series of shaking table tests on a full-scale steel structure equipped with MC-BRBs were carried out to investigate the behavior and capability of this new BRB design for seismic mitigation. The experimental results illustrate that the MC-BRB possesses a stable mechanical behavior under cyclic loadings and provides good protection to structures during earthquakes. Also, a mathematical model has been developed to simulate the mechanical characteristics of BRBs.