Accurate estimates of ductility demands on buckling-restrained braced frames(BRBFs)are crucial to performance-based design of BRBFs.An analytical study on the seismic behavior of BRBFs has been conducted at the ATLSS ...Accurate estimates of ductility demands on buckling-restrained braced frames(BRBFs)are crucial to performance-based design of BRBFs.An analytical study on the seismic behavior of BRBFs has been conducted at the ATLSS Center,Lehigh University to prepare for an upcoming experimental program.The analysis program DRAIN-2DX was used to model a one-bay,four-story prototype BRBF including material and geometric nonlinearities.The buckling- restrained brace(BRB)model incorporates both isotropic and kinematic hardening.Nonlinear static pushover and time- history analyses were performed on the prototype BRBF.Performance objectives for the BRBs were defined and used to evaluate the time-history analysis results.Particular emphasis was placed on global ductility demands and ductility demands on the BRBs.These demands were compared with anticipated ductility capacities.The analysis results,along with results from similar previous studies,are used to evaluate the BRBF design provisions that have been recommended for codification in the United States.The results show that BRB maximum ductility demands can be as high as 20 to 25.These demands significantly exceed those anticipated by the BRBF recommended provisions.Results from the static pushover and time- history analyses are used to demonstrate why the ductility demands exceed those anticipated by the recommended provisions. The BRB qualification testing protocol contained in the BRBF recommended provisions is shown to be inadequate because it requires only a maximum ductility demand of at most 7.5.Modifications to the testing protocol are recommended.展开更多
A satisfactory ductile performance of moment-resisting reinforced concrete concentric braced frame structures (RC-MRCBFs) is not warranted by only following the provisions proposed in Mexico’s Federal District Code (...A satisfactory ductile performance of moment-resisting reinforced concrete concentric braced frame structures (RC-MRCBFs) is not warranted by only following the provisions proposed in Mexico’s Federal District Code (MFDC-04). The nonlinear behavior of low to medium rise ductile RC-MRCBFs using steel X-bracing susceptible to buckling is evaluated in this study. The height of the studied structures ranges from 4 to 20 stories and they were located for design in the lakebed zone of Mexico City. The design of RC-MRCBFs was carried out considering variable contribution of the two main lines of defense of the dual system (RC columns and steel braces). In order to observe the principal elements responsible for dissipating the earthquake input energy, yielding mappings for diff erent load-steps were obtained using both nonlinear static and dynamic analyses. Some design parameters currently proposed in MFDC-04 as global ductility capacities, overstrength reduction factors and story drifts corresponding to diff erent limit states were assessed as a function of both the considered shear strength and slenderness ratios for the studied RC-MRCBFs using pushover analyses. Additionally, envelopes of response maxima of dynamic parameters were obtained from the story and global hysteresis curves. Finally, a brief discussion regarding residual drifts, residual drift ratios, mappings of residual deformations in steel braces and residual rotations in RC beams and columns is presented. From the analysis of the obtained results, it is concluded that when a suitable design criterion is considered, good structural behavior of RC-MRCBFs with steel-X bracing can be obtained. It is also observed that the shear strength balance has an impact in the height-wise distribution of residual drifts, and an important “shake-down” eff ect is obtained for all cases. There is a need to improve design parameters currently proposed in MFDC to promote an adequate seismic performance of RC-MRCBFs.展开更多
This study investigates the efficiency of two types of rehabilitation methods based on economic justification that can lead to logical decision making between the retrofitting schemes. Among various rehabilitation met...This study investigates the efficiency of two types of rehabilitation methods based on economic justification that can lead to logical decision making between the retrofitting schemes. Among various rehabilitation methods, concentric chevron bracing(CCB) and cylindrical friction damper(CFD) were selected. The performance assessment procedure of the frames is divided into two distinct phases. First, the limit state probabilities of the structures before and after rehabilitation are investigated. In the second phase, the seismic risk of structures in terms of life safety and financial losses(decision variables) using the recently published FEMA P58 methodology is evaluated. The results show that the proposed retrofitting methods improve the serviceability and life safety performance levels of steel and RC structures at different rates when subjected to earthquake loads. Moreover, these procedures reveal that financial losses are greatly decreased, and were more tangible by the application of CFD rather than using CCB. Although using both retrofitting methods reduced damage state probabilities, incorporation of a site-specific seismic hazard curve to evaluate mean annual occurrence frequency at the collapse prevention limit state caused unexpected results to be obtained. Contrary to CFD, the collapse probability of the structures retrofitted with CCB increased when compared with the primary structures.展开更多
Self-centering earthquake-resistant structures have received increased attention due to their ability to reduce post-earthquake residual deformations and,thus,repair time and cost.This stimulated the development of re...Self-centering earthquake-resistant structures have received increased attention due to their ability to reduce post-earthquake residual deformations and,thus,repair time and cost.This stimulated the development of recentering shape memory alloy(SMA)dampers that use superelastic nitinol wires to dissipate energy and self-center the structure.However,there are still a few case studies applications on full-scale RC buildings in the literature.Moreover,general guidelines or even simplified approaches for the practical design of SMA damped braces are still lacking.This paper focuses on evaluating the effect of using self-centering shape memory alloy dampers for buckling-restrained braces applied for the seismic retrofit of a complex RC building structure.A design method originally proposed for elastoplastic dampers was implemented to size the SMA dampers to be placed on selected spans and stories of a building.The effectiveness of the design procedure was demonstrated by nonlinear time-history analyses under different sets of earthquake strong ground motions.The analysis results show that the recentering shape memory alloy bracing system is effective in limiting the maximum transient inter-story drifts and reducing the residual inter-story drifts after strong seismic events,due to its excellent recentering behavior together with its not negligible energy dissipation capacity.展开更多
Spatial structures such as a gymnasium and an exhibition hall often use ceilings because of enhancing sound effects and reducing heating bills. Although the ceiling members fell down on a large scale due to the seismi...Spatial structures such as a gymnasium and an exhibition hall often use ceilings because of enhancing sound effects and reducing heating bills. Although the ceiling members fell down on a large scale due to the seismic motion according to the past great earthquake disaster reports, structural engineers particularly do not carry out the seismic design. The study gives structural engineers the equivalent static loads for the design of the earthquake-proof design of the ceiling system. In particular, it is significant to investigate the dynamic behavior and the applied seismic loads for the complicated vibration of the long span arch building structures with RC columns.展开更多
文摘Accurate estimates of ductility demands on buckling-restrained braced frames(BRBFs)are crucial to performance-based design of BRBFs.An analytical study on the seismic behavior of BRBFs has been conducted at the ATLSS Center,Lehigh University to prepare for an upcoming experimental program.The analysis program DRAIN-2DX was used to model a one-bay,four-story prototype BRBF including material and geometric nonlinearities.The buckling- restrained brace(BRB)model incorporates both isotropic and kinematic hardening.Nonlinear static pushover and time- history analyses were performed on the prototype BRBF.Performance objectives for the BRBs were defined and used to evaluate the time-history analysis results.Particular emphasis was placed on global ductility demands and ductility demands on the BRBs.These demands were compared with anticipated ductility capacities.The analysis results,along with results from similar previous studies,are used to evaluate the BRBF design provisions that have been recommended for codification in the United States.The results show that BRB maximum ductility demands can be as high as 20 to 25.These demands significantly exceed those anticipated by the BRBF recommended provisions.Results from the static pushover and time- history analyses are used to demonstrate why the ductility demands exceed those anticipated by the recommended provisions. The BRB qualification testing protocol contained in the BRBF recommended provisions is shown to be inadequate because it requires only a maximum ductility demand of at most 7.5.Modifications to the testing protocol are recommended.
基金National Science and Technology Council of Mexico (Conacyt)
文摘A satisfactory ductile performance of moment-resisting reinforced concrete concentric braced frame structures (RC-MRCBFs) is not warranted by only following the provisions proposed in Mexico’s Federal District Code (MFDC-04). The nonlinear behavior of low to medium rise ductile RC-MRCBFs using steel X-bracing susceptible to buckling is evaluated in this study. The height of the studied structures ranges from 4 to 20 stories and they were located for design in the lakebed zone of Mexico City. The design of RC-MRCBFs was carried out considering variable contribution of the two main lines of defense of the dual system (RC columns and steel braces). In order to observe the principal elements responsible for dissipating the earthquake input energy, yielding mappings for diff erent load-steps were obtained using both nonlinear static and dynamic analyses. Some design parameters currently proposed in MFDC-04 as global ductility capacities, overstrength reduction factors and story drifts corresponding to diff erent limit states were assessed as a function of both the considered shear strength and slenderness ratios for the studied RC-MRCBFs using pushover analyses. Additionally, envelopes of response maxima of dynamic parameters were obtained from the story and global hysteresis curves. Finally, a brief discussion regarding residual drifts, residual drift ratios, mappings of residual deformations in steel braces and residual rotations in RC beams and columns is presented. From the analysis of the obtained results, it is concluded that when a suitable design criterion is considered, good structural behavior of RC-MRCBFs with steel-X bracing can be obtained. It is also observed that the shear strength balance has an impact in the height-wise distribution of residual drifts, and an important “shake-down” eff ect is obtained for all cases. There is a need to improve design parameters currently proposed in MFDC to promote an adequate seismic performance of RC-MRCBFs.
文摘This study investigates the efficiency of two types of rehabilitation methods based on economic justification that can lead to logical decision making between the retrofitting schemes. Among various rehabilitation methods, concentric chevron bracing(CCB) and cylindrical friction damper(CFD) were selected. The performance assessment procedure of the frames is divided into two distinct phases. First, the limit state probabilities of the structures before and after rehabilitation are investigated. In the second phase, the seismic risk of structures in terms of life safety and financial losses(decision variables) using the recently published FEMA P58 methodology is evaluated. The results show that the proposed retrofitting methods improve the serviceability and life safety performance levels of steel and RC structures at different rates when subjected to earthquake loads. Moreover, these procedures reveal that financial losses are greatly decreased, and were more tangible by the application of CFD rather than using CCB. Although using both retrofitting methods reduced damage state probabilities, incorporation of a site-specific seismic hazard curve to evaluate mean annual occurrence frequency at the collapse prevention limit state caused unexpected results to be obtained. Contrary to CFD, the collapse probability of the structures retrofitted with CCB increased when compared with the primary structures.
文摘Self-centering earthquake-resistant structures have received increased attention due to their ability to reduce post-earthquake residual deformations and,thus,repair time and cost.This stimulated the development of recentering shape memory alloy(SMA)dampers that use superelastic nitinol wires to dissipate energy and self-center the structure.However,there are still a few case studies applications on full-scale RC buildings in the literature.Moreover,general guidelines or even simplified approaches for the practical design of SMA damped braces are still lacking.This paper focuses on evaluating the effect of using self-centering shape memory alloy dampers for buckling-restrained braces applied for the seismic retrofit of a complex RC building structure.A design method originally proposed for elastoplastic dampers was implemented to size the SMA dampers to be placed on selected spans and stories of a building.The effectiveness of the design procedure was demonstrated by nonlinear time-history analyses under different sets of earthquake strong ground motions.The analysis results show that the recentering shape memory alloy bracing system is effective in limiting the maximum transient inter-story drifts and reducing the residual inter-story drifts after strong seismic events,due to its excellent recentering behavior together with its not negligible energy dissipation capacity.
文摘Spatial structures such as a gymnasium and an exhibition hall often use ceilings because of enhancing sound effects and reducing heating bills. Although the ceiling members fell down on a large scale due to the seismic motion according to the past great earthquake disaster reports, structural engineers particularly do not carry out the seismic design. The study gives structural engineers the equivalent static loads for the design of the earthquake-proof design of the ceiling system. In particular, it is significant to investigate the dynamic behavior and the applied seismic loads for the complicated vibration of the long span arch building structures with RC columns.