The effects of starch phosphate monoester content(SPC),namely C-3(C3P)and C-6 phosphate monoesters(C6P),on the starch properties were investigated using four potato starches with varied SPC/C3P/C6P and two nonphosphor...The effects of starch phosphate monoester content(SPC),namely C-3(C3P)and C-6 phosphate monoesters(C6P),on the starch properties were investigated using four potato starches with varied SPC/C3P/C6P and two nonphosphorylated maize starches with a similar range of amylose content(AC)as controls.The starch property results showed that a higher SPC is associated with lower turbidity,storage and loss modulus after storage,and water solubility,but higher swelling power(SP)and pasting viscosities.These findings suggested that SPC inhibited molecular rearrangement during storage and starch leaching during heating,and enhanced swelling and viscosities due to increased hydration and water uptake caused by the repulsion effect of phosphate groups and a less ordered crystalline structure.Increased SPC also resulted in lower resistant starch(RS)content in a native granular state but higher RS after retrogradation.Pearson correlations further indicated that SPC/C3P/C6P were positively correlated with peak(r^(2)=0.925,0.873 and 0.930,respectively),trough(r^(2)=0.994,0.968 and 0.988,respectively),and final viscosities(r^(2)=0.981,0.968 and 0.971,respectively).Notably,SPC,mainly C3P,exhibited a significantly positive correlation with SP(r^(2)=0.859)and setback viscosity(r^(2)=0.867),whereas SPC,mainly C6P,showed a weak positive correlation with RS after retrogradation(r^(2)=0.746).However,SPC had no significant correlations with water solubility,turbidity and rheology properties,which were more correlated with AC.These findings are helpful for the food industry to select potato starches with desired properties based on their contents of SPC,C3P,or C6P.展开更多
Lotus seed starch (15%, w/w) was subjected to ultra-high pressure (UHP) at 500 MPa for 10~60 min. The effects of UHP on the structural, pasting, and thermal properties of starch were investigated using solid-stat...Lotus seed starch (15%, w/w) was subjected to ultra-high pressure (UHP) at 500 MPa for 10~60 min. The effects of UHP on the structural, pasting, and thermal properties of starch were investigated using solid-state 13C CP/MAS NMR, differential scanning calorimetry (DSC), HPSEC-MALLS-RI, and a rapid visco analyzer. The 13C CP/MAS NMR results revealed a reduction in the relative crystallinity and peak intensity of the crystalline state with increasing the UHP time. The molecular weight of native starch was 1.433 × 107 Da, which was higher than that of the UHP-treated starch. Viscograms of UHP-treated starch revealed an increase in paste viscosity, peak time, and pasting temperature and a reduction in breakdown and setback viscosity compared to the native starch. Furthermore, the DSC results showed a reduction in gelatinization temperature and gelatinization enthalpy with increasing the UHP time.展开更多
<span style="font-size:14px;">The use of hydrocolloids to modify the properties of native starches has been on the rise in the recent times due to the market demand for natural, safe and economical foo...<span style="font-size:14px;">The use of hydrocolloids to modify the properties of native starches has been on the rise in the recent times due to the market demand for natural, safe and economical food ingredients. The objective of this study was to investigate the effect of gum Arabic from </span><i><span style="font-size:14px;">Acacia senegal </span></i><span style="font-size:14px;">var.</span><i><span style="font-size:14px;"> kerensis</span></i><span style="font-size:14px;"> to modify pasting and textural properties of corn and cassava starches, as an alternative to chemical </span><span style="font-size:14px;">and enzymatic modification. Blends were prepared by substituting the starches </span><span style="font-size:14px;">with gum at different levels (0%, 0.5%, 2.0%, 4.0%, 6.0% and 8.0%), whereas native corn and cassava starches were used as control. The pasting properties of the starch-gum mixed systems were determined using the Brabender vis</span><span style="font-size:14px;">cograph while the textural properties (firmness, consistency, cohesiveness</span><span style="font-size:14px;"> and work of cohesion) were determined using Texture Analyzer. Results showed that the gum Arabic significantly decreased all the viscosity parameters</span><i> </i><span style="font-size:14px;">(peak viscosity, final viscosity, break down and setback values) of both starches at </span><span style="font-size:14px;">all levels of substitution. However, there was no significant effect of gum</span><span style="font-size:14px;"> Arabic on the pasting temperature (72.05</span><span style="font-size:10.0pt;font-family:;" "=""><span style="font-size:14px;">°C - 71.85</span><span style="font-size:14px;white-space:normal;">°</span><span style="font-size:14px;">C) for corn starch and (68.90</span><span style="font-size:14px;white-space:normal;">°</span><span style="font-size:14px;">C - 68.65</span><span style="font-size:14px;white-space:normal;">°</span><span style="font-size:14px;">C) for cassava starch. The degree of gel firmness and consistency was higher in corn starch than in cassava starch and the effect of gum addition </span><span style="font-size:14px;">differed with each starch. The findings from this study indicate that gum</span><span style="font-size:14px;"> Arabic significantly modified the pasting and textural properties of corn and cassava starches due to strong interaction between the gum and the starches. Hence, this property of gum Arabic could be useful in controlling starch retrogradation and determining starch end use functionality.</span></span>展开更多
The interest in thermoplastic starch(TPS)as a substitute material to replace conventional thermoplastics continues especially due its biodegradability,availability,low cost and because it is obtained from renewable so...The interest in thermoplastic starch(TPS)as a substitute material to replace conventional thermoplastics continues especially due its biodegradability,availability,low cost and because it is obtained from renewable sources.However,its poor mechanical properties and its high sensitivity to humidity have limited its use in several applications.Here,the copolymer poly(ethylene-co-vinyl alcohol)(EVOH),with two different ethylene contents,27 and 44 mol%were blended with TPS by extrusion in order to overcome these limitations.The obtained blends were characterized by thermogravimetric analysis(TGA),differential scanning calorimetry(DSC),mechanical tensile testing,Scanning Electron Microscopy(SEM)and moisture absorption test.The addition of EVOH copolymer did not significantly changed the thermal stability of TPS,however it increased the tensile strength in 65%when compared to TPS.The morphology of the blends did not showed two distinct phases,an indication of miscibility or partial miscibility of the components.A decrease of moisture absorption was obtained by the addition of EVOH and is more pronounced for the EVOH with 44% of ethylene.展开更多
Resistant starch (RS) is the undigested starch that passes through the small intestine to the large intestine. As a functional low calorie additive, it has special applications in the food industry. Rapid visco anal...Resistant starch (RS) is the undigested starch that passes through the small intestine to the large intestine. As a functional low calorie additive, it has special applications in the food industry. Rapid visco analysis (RVA) and the Brabender farinograph were used to study the pasting properties and the viscoelasticity of blends of RS (RS3 and RS2) and three wheat flours. The wheat flours represented strong gluten wheat (SGW), intermediate gluten wheat (IGW), and weak gluten wheat (WGW) flours, at different levels of RS substitution (0, 5, 10, 15, and 20%). The influence of RS3 on the control wheat flours and RS-wheat flour blends were consistent with those of RS2. The peak, trough, and final viscosities of RS3-wheat flour blends were higher than those of the corresponding RS2-wheat flour blends. The peak, trough, breakdown, final, and setback viscosities ofwheat-RS blends decreased with an increase in resistant starch contents from 0 to 20% in the blends. The 0-20% RS-wheat flour blends were all able to form doughs. The dough development times, dough stabilities, dough breakdown times, and farinograph quality numbers for the RS-wheat flour blends decreased as the RS proportion in the blends increased. The values for RS-SGW flour blends were the highest, followed by RS-IGW and then RS-WGW flour blends. The water absorption values for RS-wheat flour blends and the mixing tolerance index for RS-WGW flour blends were found to increase significantly with an increasing proportion of RS from 0 to 20%, but the mixing tolerance index for RS-SGW and RS-IGW flour blends showed no significant differences amongst the different ratios. Correlation analysis showed that the Farinograph quality number was highly positively correlated with dough breakdown time, dough stability, and dough development time (r= 1.000, 0.958, 0.894), and highly negatively correlated with the mixing tolerance index (r =-0.890). Data from this study can be used for the development of dough-based products. It also provides a basis for RS-wheat flour blends and quality evaluation in the food industry.展开更多
The effect of gluten on pasting properties of wheat starch was studied to provide a scientific basis for the application of gluten in food production and quality improvement in wheat breeding. The pasting properties o...The effect of gluten on pasting properties of wheat starch was studied to provide a scientific basis for the application of gluten in food production and quality improvement in wheat breeding. The pasting properties of blends were analyzed using PH 1391 wheat starch mixed with five different additions of three kinds of gluten (strong-, medium-, and weak-gluten) and the structures of network were observed with microscope. The significant downtrends of peak viscosity, trough viscosity, final viscosity, area of viscosity, setback, and peak time were observed with the increase in the addition of gluten. In general, the average value of them decreased respectively by 3.6, 4.8, 3.4, 3.8, 4.0, and 1.18% of those corresponding indexes of pure starch for every 2% increase in gluten. The decreasing rate of the indexes mentioned above exceeded more than 2% except peak time, but there were no significant influence of gluten addition on breakdown, pasting temperature and pasting time. The inter layer composed of gluten was not observed when the addition of gluten was 10%, as the compound formed of gluten inlaid in the paste of starch, but obvious inter layer was detected when the addition of gluten was 18%. There was significant or remarkable difference among the effects of three different kinds of gluten on the peak viscosity, trough viscosity, area of viscosity, setback, and peak time, but it had no significant difference among the effects of different glutens on pasting temperature and pasting time. The descending order of the effect of different glutens on peak viscosity, trough viscosity, and area of viscosity was strong-, medium-, and weak-gluten, but the order of them for setback was opposite. Both addition and types of gluten significantly affected peak viscosity, trough viscosity, area of viscosity, setback, and peak time, but there were no significant effects of it on peak time and peak temperature.展开更多
Octenyl succinic anhydride (OSA) modified early Indica rice starch was prepared in aqueous slurry systems using response surface methodology. The paste properties of the OSA starch were also investigated. Results in...Octenyl succinic anhydride (OSA) modified early Indica rice starch was prepared in aqueous slurry systems using response surface methodology. The paste properties of the OSA starch were also investigated. Results indicated that the suitable parameters for the preparation of OSA starch from early Indica rice starch were as follows: reaction period 4 h, reaction temperature 33.4℃, pH of reaction system 8.4, concentration of starch slurry 36.8% (in proportion to water, w/w), amount of OSA 3% (in proportion to starch, w/w). The degree of substitution was 0.0188 and the reaction efficiency was 81.0%. The results of paste properties showed that with increased OSA modification, the starch derivatives had higher paste clarity, decreased retrogradation and better freeze-thaw stability.展开更多
The physical and chemical properties of the flours, starches, and modified starches of indica rice and japonica rice were investigated in this paper. Results showed that the swelling powers of flour, starch, and phosp...The physical and chemical properties of the flours, starches, and modified starches of indica rice and japonica rice were investigated in this paper. Results showed that the swelling powers of flour, starch, and phosphate starch [substitution degree (DS)=0.065] of japonica rice were significantly higher than those (DS=0.065) of indica rice. The transmittance of modified starches was highest; and that of flours was lowest. The pasting property investigated with rapid visco analyzer (RVA) indicated that the peak viscosity and breakdown value of paste with high swelling power were high. Furthermore, the effect of protein and amylose content on pasting property were investigated. The results of rheological properties determined using rheological rheometer showed that at the same temperature, the storage modulus (G′ of flour, starch, and modified starch of indica rice was higher than that of japonica rice. For each variety, the G′of flour was the highest, while the G′of modified starch was the lowest.展开更多
A major challenge in modern rice production is to achieve the dual goals of high yield and good quality with low environmental costs.This study was designed to determine whether optimized nitrogen(N)fertilization coul...A major challenge in modern rice production is to achieve the dual goals of high yield and good quality with low environmental costs.This study was designed to determine whether optimized nitrogen(N)fertilization could fulfill these multiple goals.In two-year experiments,two high yielding‘super’rice cultivars were grown with different N fertilization management regimes,including zero N input,local farmers’practice(LFP)with heavy N inputs,and optimized N fertilization(ONF).In ONF,by reducing N input,increasing planting density,and optimizing the ratio of urea application at different stages,N use efficiency and the physicochemical and textural properties of milled rice were improved at higher yield levels.Compared with LFP,yield and partial factor productivity of applied N(PFP)under ONF were increased(on average)by 1.70 and 13.06%,respectively.ONF increased starch and amylose content,and significantly decreased protein content.The contents of the short chains of A chain(degree of polymerization(DP)6-12)and B1 chain(DP 13-25)of amylopectin were significantly increased under ONF,which resulted in a decrease in the stability of rice starch crystals.ONF increased viscosity values and improved the thermodynamic properties of starch,which resulted in better eating and cooking quality of the rice.Thus,ONF could substantially compensate the negative effects caused by N fertilizer and achieve the multiple goals of higher grain quality and nitrogen use efficiency(NUE)at high yield levels.These results will be useful for applications of high quality rice production at high yield levels.展开更多
Ethylene glycol, glycerol, sorbitol, formamide, and urea were used as plasticizers for the preparation of thermoplastic starch(TPS) from corn starch. The properties of TPS were tested by analysis method. The results...Ethylene glycol, glycerol, sorbitol, formamide, and urea were used as plasticizers for the preparation of thermoplastic starch(TPS) from corn starch. The properties of TPS were tested by analysis method. The results showed that TPSs were more highly plasticized with amines than alcohols. For the same type of plasticizer, the degree of plasticization decreased as the molecular weight of plasticizer increased. The relationship between plasticization degree and TPS properties was characterized and described by mechanical properties and water absorption. The experimental results showed that when the degree of plasticization increased, the tensile strength decreased and the elongation at breakage and water absorption increased.展开更多
A kind of full biodegradable film material is discussed in this article. The film material is composed of starch, PVA, degradable polyesters(PHB, PHB V, PCL) with built plasticizer, a cross linking reinforcing agen...A kind of full biodegradable film material is discussed in this article. The film material is composed of starch, PVA, degradable polyesters(PHB, PHB V, PCL) with built plasticizer, a cross linking reinforcing agent and a wet strengthening agent. It contains a high percentage of starch, costs cheap and is excellent in weather fastness, temperature resistance and waterproof and it could be completely biodegraded. The present paper deals mainly with a new technical route using a new type of electromagnetic dynamic blow molding extruder and some effects on mechanical properties of the system.展开更多
For the purpose of alleviating the adverse effect of paste aging on the properties of corn starch film, a series of electroneutrally quaternized/sulfosuccinylated starches(EQSS) with different degrees of substitutio...For the purpose of alleviating the adverse effect of paste aging on the properties of corn starch film, a series of electroneutrally quaternized/sulfosuccinylated starches(EQSS) with different degrees of substitution(DS) were synthesized via the quaternization/sulfosuccination of acid-thinned corn starch(ATS) by varying the amounts of N-(3-chloro-2-hydroxypropl) trimethylammonium chloride, maleic anhydride, and sodium hydrogen sulfite. The influence of paste aging on the properties of starch film cast from heat-induced starch paste was investigated and the properties were explored in terms of tensile strength, elongation, work at break, degree of crystallinity, and flex-fatigue resistance. The experimental results showed that the paste ageing generated adverse influence on the elongation, work at break, and flex-fatigue resistance of starch film. Further experiments showed that electroneutral quaternization/sulfosuccination of starch were able to alleviate the negative effect of paste ageing on the elongation, work at break, and flex-fatigue resistance, thereby obviously enhancing the elongation, work at break and flex-fatigue resistance, and thus reducing the drawback of brittleness. The enhancement depended on the amounts of the substituents introduced. With the increase in DS value, the elongation and work at break as well as flex-fatigue resistance continuously rose, whereas the tensile strength gradually reduced.展开更多
In this study, the mechanical properties (tensile strength, elongation at break and folding resistance) of edible biopolymer film blends formed from blended cassava starch and rice flour at different compositions wi...In this study, the mechanical properties (tensile strength, elongation at break and folding resistance) of edible biopolymer film blends formed from blended cassava starch and rice flour at different compositions with sorbital used as a plasticizer. A suitable ratio of cassava starch and rice flour to water at 10% w/v was used to form a film solution. The addition of a plasticizer agent up to 30% w/w of blending compositions improved the mechanical properties of the generated films. The mechanical properties of the edible blended films with 30% plasticizer were strongly dependent on the blending compositions. Our results pointed out that the cassava starch and rice flour films at a ratio of 70:30 with sorbitol 30% (w/w) had the highest tensile strength which related to folding endurance of the films.展开更多
Usually, the maize cob is formed by grains of medium size. However, the extremes have larger or smaller size grains. The objective of this study was to investigate the influence of grain size from the same hybrid on t...Usually, the maize cob is formed by grains of medium size. However, the extremes have larger or smaller size grains. The objective of this study was to investigate the influence of grain size from the same hybrid on the physicochemical properties of isolated starch, crude maize flours and nixtamalized maize flours. Two hybrids, one from CIMMyT-Mexico called IMIC-254 and one commercial sample from Monsanto (Puma) were studied. The isolated starch granules from small, medium, and large grains exhibit the same size and distribution. The grain size has influence in the determination of cooking and steeping times;small grains reach these parameters faster than medium and large ones. The hardness of the grain size for both hybrids does not showed statistical differences between them. The starch from small, medium and large grains is mainly composed of amylopectin;this result is confirmed by X-ray diffraction and Megazine analysis. The apparent viscosity of the isolated starches of small grains showed statistically significant higher peak values. According to these results, it is possible to use small, medium, and large grains to obtain products with the same physicochemical properties, by adjusting the cooking and steeping times and Ca2+ content.展开更多
The starches were isolated by alkaline extraction from white and red sorghum, predominant cultivars in the Sahara of Algeria. Morphological, thermal properties and amylose content of isolated starches were examined. T...The starches were isolated by alkaline extraction from white and red sorghum, predominant cultivars in the Sahara of Algeria. Morphological, thermal properties and amylose content of isolated starches were examined. The starches of two sorghum landraces of white and pigmented kernels growing in hyper arid environmental conditions showed significant differences in granule size, amylose content and thermal behavior which ultimately affect the physicochemical and functional properties. When observed using environmental scanning electron microscopy (ESEM). The starch granules showed polyhedral shape. Some of them showed pinholes. The granular size ranged between 6.325-39.905 μm and 7.096-44.774 μm, respectively for white and red sorghum starches. The granule size distribution was unimodal. The amylose content in white sorghum starch (27.1%) was higher than that in red sorghum (24.8%). Differential scanning calorimetry (DSC) analysis revealed that sorghum starches present higher temperatures at the peak (70.60℃ and 72.28℃ for white and red sorghum starches, respectively) and lower gelatinization enthalpies (9.087 J/g and 8.270 J/g for white and red sorghum starches, respectively) than other cereal starches. The determination of these properties is relevant to the comprehension of starch and starch-based foods digestibility in order to direct them towards the specific applications in food and nonfood sectors.展开更多
The objective of this work was to investigate and compare the structural and physicochemical properties of Dioscorea opposita Thunb. flour(DF), starch(DS) and purified starch(PDS). DS and PDS showed higher total...The objective of this work was to investigate and compare the structural and physicochemical properties of Dioscorea opposita Thunb. flour(DF), starch(DS) and purified starch(PDS). DS and PDS showed higher total starch and amylose content as compared to DF. Starch granules of DF were oval shape with rough surface while DS and PDS were relatively smooth by SEM. According to XRD measurements, FT-IR spectroscopy and 13 C CP/MAS NMR spectroscopy, all samples displayed C-type crystalline pattern, and PDS displayed the highest relative crystallinity and short-range order structure. However, DF contained the greatest content of the amorphous-phase. DF displayed the absorption peaks at 1730 and 1560 cm^-1 related to the characteristic groups of lipid and protein using FT-IR spectroscopy. Furthermore, DF exhibited significantly higher pasting temperature while DS displayed the great peak and breakdown viscosity, as well as PDS had the highest setback and final viscosity, presumably due to the chemical composition and structural differences. DF exhibited the highest gelatinization temperature whereas PDS displayed the greatest gelatinization enthalpy. The pasting and gelatinization properties of flour and starch might be related to the relative crystallinity, short-range order structure or the interactions between starch and its associated compounds. The results allow the improvement in the manufacture of Dioscorea opposita Thunb. flour and starch with desirable pasting and gelatinization properties.展开更多
Drilling mud is a key component in drilling operations and in accessing oil and gas reservoirs. Bentonite is applied as a viscosifier, fluid loss control agent, and as a weighting material in water-based drilling mud....Drilling mud is a key component in drilling operations and in accessing oil and gas reservoirs. Bentonite is applied as a viscosifier, fluid loss control agent, and as a weighting material in water-based drilling mud. The type of bentonite used in drilling mud formulation is sodium bentonite due to its high dispersion properties and high swelling capacity. Nigeria has a huge bentonite clay deposit resources which can be evaluated and enhanced in order to be utilized as drilling mud. However, bentonite clay from different parts of Nigeria was investigated and found to be calcium bentonite which is not suitable for drilling mud, because it has low swelling capacity and poor rheological properties. In this study, local bentonite obtained from Afuze, Edo state was used to formulate different samples of drilling mud with each treated using thermo-chemical beneficiation process with sodium carbonate and cassava starch, and then undergo characterization to identify the changes in physical properties and finally, draw comparison with API values for standard drilling mud. The results obtained from this study indicates that, the flow and rheological properties of the beneficiated drilling mud developed through thermo-chemical treatment, showed significant improvement compared to the untreated mud. Therefore, pure calcium bentonite from natural deposits in Nigeria can be modified to sodium bentonite and sufficiently used in drilling mud formulation.展开更多
Sweetpotato starch thermal properties and its noodle quality were analyzed using a rapid predictive method based on near-infrared spectroscopy (NIRS). This method was established based on a total of 93 sweetpotato g...Sweetpotato starch thermal properties and its noodle quality were analyzed using a rapid predictive method based on near-infrared spectroscopy (NIRS). This method was established based on a total of 93 sweetpotato genotypes with diverse genetic background. Starch samples were scanned by NIRS and analyzed for quality properties by reference methods. Results of statistical modelling indicated that NIRS was reasonably accurate in predicting gelatinization onset temperature (To) (standard error of prediction SEP=2.014 ℃, coefficient of determination RSQ=0.85), gelatinization peak temperature (Tp) (SEP=-1.371 ℃, RSQ=0.89), gelatinization temperature range (Tr) (SEP=2.234 ℃, RSQ=0.86), and cooling resistance (CR) (SEP=0.528, RSQ=0.89). Gelatinization completion temperature (To), enthalpy of gelatinization (△H), cooling loss (CL) and swelling degree (SWD), were modelled less well with RSQ between 0.63 and 0.84. The present results suggested that the NIRS based method was sufficiently accurate and practical for routine analysis of sweetpotato starch and its noodle quality.展开更多
With changes in food preferences and life styles,more and more attentions have been focused on healthier food.Nowadays,resistant starch(RS)which can resist digestion in the human intestine has been recognized and acce...With changes in food preferences and life styles,more and more attentions have been focused on healthier food.Nowadays,resistant starch(RS)which can resist digestion in the human intestine has been recognized and accepted.High RS diet shows great benefit for the human health,and breeding high RS rice variety is a great target for realizing dietary intervention.To provide guidance for RS improvement in rice,this review summarized the unique physiochemical properties of RS and the possible approaches,i.e.genetic regulation,for enhancing RS content in rice,and proposed the potential ways to obtain rice variety with high RS content.展开更多
Starch/polylactic acid(PLA) composites were prepared by melt extrusion, with corn starch and PLA as raw materials, glycerol as the plasticizer. Effects of starch/PLA ratio on the interdependence of two-phase and other...Starch/polylactic acid(PLA) composites were prepared by melt extrusion, with corn starch and PLA as raw materials, glycerol as the plasticizer. Effects of starch/PLA ratio on the interdependence of two-phase and other properties of the composites were studied. The combination of results of TGA with SEM indicated that the interdependence between starch and PLA was increased gradually as the starch/PLA ratio reduced. DSC results showed that the glass transition temperature(Tg), melting temperature(Tm) and degree of crystallinity of PLA in composites were increased gradually, whereas the cold crystallization temperature(Tc) was gradually decreased as the starch/PLA ratio reduced. The rheological properties of composites were closely related with the interdependence of two-phase, with reducing starch/PLA proportion, the interdependence was increased, and then the strain for storage modulus was firstl reduced and then gradually increased. Frequency scanning showed that the storage modulus and complex viscosity were decreased with reducing starch content. As the starch/PLA ratio reduced, the matrix phase PLA was increased, so that the strength of composites was increased gradually, whereas water absorption rate was decreased gradually.展开更多
基金the China Scholarship Council funding(CSC,202006150028)for her PhD study at the University of Copenhagen,Denmark.
文摘The effects of starch phosphate monoester content(SPC),namely C-3(C3P)and C-6 phosphate monoesters(C6P),on the starch properties were investigated using four potato starches with varied SPC/C3P/C6P and two nonphosphorylated maize starches with a similar range of amylose content(AC)as controls.The starch property results showed that a higher SPC is associated with lower turbidity,storage and loss modulus after storage,and water solubility,but higher swelling power(SP)and pasting viscosities.These findings suggested that SPC inhibited molecular rearrangement during storage and starch leaching during heating,and enhanced swelling and viscosities due to increased hydration and water uptake caused by the repulsion effect of phosphate groups and a less ordered crystalline structure.Increased SPC also resulted in lower resistant starch(RS)content in a native granular state but higher RS after retrogradation.Pearson correlations further indicated that SPC/C3P/C6P were positively correlated with peak(r^(2)=0.925,0.873 and 0.930,respectively),trough(r^(2)=0.994,0.968 and 0.988,respectively),and final viscosities(r^(2)=0.981,0.968 and 0.971,respectively).Notably,SPC,mainly C3P,exhibited a significantly positive correlation with SP(r^(2)=0.859)and setback viscosity(r^(2)=0.867),whereas SPC,mainly C6P,showed a weak positive correlation with RS after retrogradation(r^(2)=0.746).However,SPC had no significant correlations with water solubility,turbidity and rheology properties,which were more correlated with AC.These findings are helpful for the food industry to select potato starches with desired properties based on their contents of SPC,C3P,or C6P.
基金Supported by the Cooperation in Production,Study and Research of Science and Technology Major Projects of Fujian Province(2012N5004)the Natural Science Foundation of Fujian Province(2012J01081)+1 种基金the Scientific and Technological Innovation Team Support Plan of Institution of Higher Learning in Fujian Province([2012]03)the Scientific and Technological Innovation Team Support Plan of Fujian Agriculture and Forestry University(cxtd12009)
文摘Lotus seed starch (15%, w/w) was subjected to ultra-high pressure (UHP) at 500 MPa for 10~60 min. The effects of UHP on the structural, pasting, and thermal properties of starch were investigated using solid-state 13C CP/MAS NMR, differential scanning calorimetry (DSC), HPSEC-MALLS-RI, and a rapid visco analyzer. The 13C CP/MAS NMR results revealed a reduction in the relative crystallinity and peak intensity of the crystalline state with increasing the UHP time. The molecular weight of native starch was 1.433 × 107 Da, which was higher than that of the UHP-treated starch. Viscograms of UHP-treated starch revealed an increase in paste viscosity, peak time, and pasting temperature and a reduction in breakdown and setback viscosity compared to the native starch. Furthermore, the DSC results showed a reduction in gelatinization temperature and gelatinization enthalpy with increasing the UHP time.
文摘<span style="font-size:14px;">The use of hydrocolloids to modify the properties of native starches has been on the rise in the recent times due to the market demand for natural, safe and economical food ingredients. The objective of this study was to investigate the effect of gum Arabic from </span><i><span style="font-size:14px;">Acacia senegal </span></i><span style="font-size:14px;">var.</span><i><span style="font-size:14px;"> kerensis</span></i><span style="font-size:14px;"> to modify pasting and textural properties of corn and cassava starches, as an alternative to chemical </span><span style="font-size:14px;">and enzymatic modification. Blends were prepared by substituting the starches </span><span style="font-size:14px;">with gum at different levels (0%, 0.5%, 2.0%, 4.0%, 6.0% and 8.0%), whereas native corn and cassava starches were used as control. The pasting properties of the starch-gum mixed systems were determined using the Brabender vis</span><span style="font-size:14px;">cograph while the textural properties (firmness, consistency, cohesiveness</span><span style="font-size:14px;"> and work of cohesion) were determined using Texture Analyzer. Results showed that the gum Arabic significantly decreased all the viscosity parameters</span><i> </i><span style="font-size:14px;">(peak viscosity, final viscosity, break down and setback values) of both starches at </span><span style="font-size:14px;">all levels of substitution. However, there was no significant effect of gum</span><span style="font-size:14px;"> Arabic on the pasting temperature (72.05</span><span style="font-size:10.0pt;font-family:;" "=""><span style="font-size:14px;">°C - 71.85</span><span style="font-size:14px;white-space:normal;">°</span><span style="font-size:14px;">C) for corn starch and (68.90</span><span style="font-size:14px;white-space:normal;">°</span><span style="font-size:14px;">C - 68.65</span><span style="font-size:14px;white-space:normal;">°</span><span style="font-size:14px;">C) for cassava starch. The degree of gel firmness and consistency was higher in corn starch than in cassava starch and the effect of gum addition </span><span style="font-size:14px;">differed with each starch. The findings from this study indicate that gum</span><span style="font-size:14px;"> Arabic significantly modified the pasting and textural properties of corn and cassava starches due to strong interaction between the gum and the starches. Hence, this property of gum Arabic could be useful in controlling starch retrogradation and determining starch end use functionality.</span></span>
文摘The interest in thermoplastic starch(TPS)as a substitute material to replace conventional thermoplastics continues especially due its biodegradability,availability,low cost and because it is obtained from renewable sources.However,its poor mechanical properties and its high sensitivity to humidity have limited its use in several applications.Here,the copolymer poly(ethylene-co-vinyl alcohol)(EVOH),with two different ethylene contents,27 and 44 mol%were blended with TPS by extrusion in order to overcome these limitations.The obtained blends were characterized by thermogravimetric analysis(TGA),differential scanning calorimetry(DSC),mechanical tensile testing,Scanning Electron Microscopy(SEM)and moisture absorption test.The addition of EVOH copolymer did not significantly changed the thermal stability of TPS,however it increased the tensile strength in 65%when compared to TPS.The morphology of the blends did not showed two distinct phases,an indication of miscibility or partial miscibility of the components.A decrease of moisture absorption was obtained by the addition of EVOH and is more pronounced for the EVOH with 44% of ethylene.
基金the National Natural Science Foundation of China (30671270)the National High Technology R & D Program of China (2006AA100101).
文摘Resistant starch (RS) is the undigested starch that passes through the small intestine to the large intestine. As a functional low calorie additive, it has special applications in the food industry. Rapid visco analysis (RVA) and the Brabender farinograph were used to study the pasting properties and the viscoelasticity of blends of RS (RS3 and RS2) and three wheat flours. The wheat flours represented strong gluten wheat (SGW), intermediate gluten wheat (IGW), and weak gluten wheat (WGW) flours, at different levels of RS substitution (0, 5, 10, 15, and 20%). The influence of RS3 on the control wheat flours and RS-wheat flour blends were consistent with those of RS2. The peak, trough, and final viscosities of RS3-wheat flour blends were higher than those of the corresponding RS2-wheat flour blends. The peak, trough, breakdown, final, and setback viscosities ofwheat-RS blends decreased with an increase in resistant starch contents from 0 to 20% in the blends. The 0-20% RS-wheat flour blends were all able to form doughs. The dough development times, dough stabilities, dough breakdown times, and farinograph quality numbers for the RS-wheat flour blends decreased as the RS proportion in the blends increased. The values for RS-SGW flour blends were the highest, followed by RS-IGW and then RS-WGW flour blends. The water absorption values for RS-wheat flour blends and the mixing tolerance index for RS-WGW flour blends were found to increase significantly with an increasing proportion of RS from 0 to 20%, but the mixing tolerance index for RS-SGW and RS-IGW flour blends showed no significant differences amongst the different ratios. Correlation analysis showed that the Farinograph quality number was highly positively correlated with dough breakdown time, dough stability, and dough development time (r= 1.000, 0.958, 0.894), and highly negatively correlated with the mixing tolerance index (r =-0.890). Data from this study can be used for the development of dough-based products. It also provides a basis for RS-wheat flour blends and quality evaluation in the food industry.
基金supported by the National Basic Research Program of China (973Program,2009CB118300)the Improved Variety Project of Shandong Province,China (LN2008-167)the Youth Science and Technology Innovation funded by the Shandong Agricultural University,China (005-23601)
文摘The effect of gluten on pasting properties of wheat starch was studied to provide a scientific basis for the application of gluten in food production and quality improvement in wheat breeding. The pasting properties of blends were analyzed using PH 1391 wheat starch mixed with five different additions of three kinds of gluten (strong-, medium-, and weak-gluten) and the structures of network were observed with microscope. The significant downtrends of peak viscosity, trough viscosity, final viscosity, area of viscosity, setback, and peak time were observed with the increase in the addition of gluten. In general, the average value of them decreased respectively by 3.6, 4.8, 3.4, 3.8, 4.0, and 1.18% of those corresponding indexes of pure starch for every 2% increase in gluten. The decreasing rate of the indexes mentioned above exceeded more than 2% except peak time, but there were no significant influence of gluten addition on breakdown, pasting temperature and pasting time. The inter layer composed of gluten was not observed when the addition of gluten was 10%, as the compound formed of gluten inlaid in the paste of starch, but obvious inter layer was detected when the addition of gluten was 18%. There was significant or remarkable difference among the effects of three different kinds of gluten on the peak viscosity, trough viscosity, area of viscosity, setback, and peak time, but it had no significant difference among the effects of different glutens on pasting temperature and pasting time. The descending order of the effect of different glutens on peak viscosity, trough viscosity, and area of viscosity was strong-, medium-, and weak-gluten, but the order of them for setback was opposite. Both addition and types of gluten significantly affected peak viscosity, trough viscosity, area of viscosity, setback, and peak time, but there were no significant effects of it on peak time and peak temperature.
基金Project (No. 2003C12009) supported by the Science and TechnologyMinistry of Zhejiang Province, China
文摘Octenyl succinic anhydride (OSA) modified early Indica rice starch was prepared in aqueous slurry systems using response surface methodology. The paste properties of the OSA starch were also investigated. Results indicated that the suitable parameters for the preparation of OSA starch from early Indica rice starch were as follows: reaction period 4 h, reaction temperature 33.4℃, pH of reaction system 8.4, concentration of starch slurry 36.8% (in proportion to water, w/w), amount of OSA 3% (in proportion to starch, w/w). The degree of substitution was 0.0188 and the reaction efficiency was 81.0%. The results of paste properties showed that with increased OSA modification, the starch derivatives had higher paste clarity, decreased retrogradation and better freeze-thaw stability.
基金the financial support of the National Natural Science Foundation of China (31050012)Special Fund for Agro-Scientific Research in the Public Interest of China (200903043)
文摘The physical and chemical properties of the flours, starches, and modified starches of indica rice and japonica rice were investigated in this paper. Results showed that the swelling powers of flour, starch, and phosphate starch [substitution degree (DS)=0.065] of japonica rice were significantly higher than those (DS=0.065) of indica rice. The transmittance of modified starches was highest; and that of flours was lowest. The pasting property investigated with rapid visco analyzer (RVA) indicated that the peak viscosity and breakdown value of paste with high swelling power were high. Furthermore, the effect of protein and amylose content on pasting property were investigated. The results of rheological properties determined using rheological rheometer showed that at the same temperature, the storage modulus (G′ of flour, starch, and modified starch of indica rice was higher than that of japonica rice. For each variety, the G′of flour was the highest, while the G′of modified starch was the lowest.
基金financially supported by the National Natural Science Foundation of China (32071943 and 31872853)the Priority Academic Program Development of Jiangsu Higher Education Institutions, China (PAPD)
文摘A major challenge in modern rice production is to achieve the dual goals of high yield and good quality with low environmental costs.This study was designed to determine whether optimized nitrogen(N)fertilization could fulfill these multiple goals.In two-year experiments,two high yielding‘super’rice cultivars were grown with different N fertilization management regimes,including zero N input,local farmers’practice(LFP)with heavy N inputs,and optimized N fertilization(ONF).In ONF,by reducing N input,increasing planting density,and optimizing the ratio of urea application at different stages,N use efficiency and the physicochemical and textural properties of milled rice were improved at higher yield levels.Compared with LFP,yield and partial factor productivity of applied N(PFP)under ONF were increased(on average)by 1.70 and 13.06%,respectively.ONF increased starch and amylose content,and significantly decreased protein content.The contents of the short chains of A chain(degree of polymerization(DP)6-12)and B1 chain(DP 13-25)of amylopectin were significantly increased under ONF,which resulted in a decrease in the stability of rice starch crystals.ONF increased viscosity values and improved the thermodynamic properties of starch,which resulted in better eating and cooking quality of the rice.Thus,ONF could substantially compensate the negative effects caused by N fertilizer and achieve the multiple goals of higher grain quality and nitrogen use efficiency(NUE)at high yield levels.These results will be useful for applications of high quality rice production at high yield levels.
基金Funded by the Fundamental Research Funds for the Central Universities(DL13CB13)the China Postdoctoral Science Foundation Funded Project(No.2014M550178)the National Natural Science Foundation of China(No.31200442)
文摘Ethylene glycol, glycerol, sorbitol, formamide, and urea were used as plasticizers for the preparation of thermoplastic starch(TPS) from corn starch. The properties of TPS were tested by analysis method. The results showed that TPSs were more highly plasticized with amines than alcohols. For the same type of plasticizer, the degree of plasticization decreased as the molecular weight of plasticizer increased. The relationship between plasticization degree and TPS properties was characterized and described by mechanical properties and water absorption. The experimental results showed that when the degree of plasticization increased, the tensile strength decreased and the elongation at breakage and water absorption increased.
文摘A kind of full biodegradable film material is discussed in this article. The film material is composed of starch, PVA, degradable polyesters(PHB, PHB V, PCL) with built plasticizer, a cross linking reinforcing agent and a wet strengthening agent. It contains a high percentage of starch, costs cheap and is excellent in weather fastness, temperature resistance and waterproof and it could be completely biodegraded. The present paper deals mainly with a new technical route using a new type of electromagnetic dynamic blow molding extruder and some effects on mechanical properties of the system.
基金Funded by the Open Project Program of Key Laboratory of Eco-Textiles,Ministry of Education,China(No.KLET0617)the Scientific Research Fund of Talent Introduction of Anhui Polytechnic University(No.2016YQQ004)
文摘For the purpose of alleviating the adverse effect of paste aging on the properties of corn starch film, a series of electroneutrally quaternized/sulfosuccinylated starches(EQSS) with different degrees of substitution(DS) were synthesized via the quaternization/sulfosuccination of acid-thinned corn starch(ATS) by varying the amounts of N-(3-chloro-2-hydroxypropl) trimethylammonium chloride, maleic anhydride, and sodium hydrogen sulfite. The influence of paste aging on the properties of starch film cast from heat-induced starch paste was investigated and the properties were explored in terms of tensile strength, elongation, work at break, degree of crystallinity, and flex-fatigue resistance. The experimental results showed that the paste ageing generated adverse influence on the elongation, work at break, and flex-fatigue resistance of starch film. Further experiments showed that electroneutral quaternization/sulfosuccination of starch were able to alleviate the negative effect of paste ageing on the elongation, work at break, and flex-fatigue resistance, thereby obviously enhancing the elongation, work at break and flex-fatigue resistance, and thus reducing the drawback of brittleness. The enhancement depended on the amounts of the substituents introduced. With the increase in DS value, the elongation and work at break as well as flex-fatigue resistance continuously rose, whereas the tensile strength gradually reduced.
文摘In this study, the mechanical properties (tensile strength, elongation at break and folding resistance) of edible biopolymer film blends formed from blended cassava starch and rice flour at different compositions with sorbital used as a plasticizer. A suitable ratio of cassava starch and rice flour to water at 10% w/v was used to form a film solution. The addition of a plasticizer agent up to 30% w/w of blending compositions improved the mechanical properties of the generated films. The mechanical properties of the edible blended films with 30% plasticizer were strongly dependent on the blending compositions. Our results pointed out that the cassava starch and rice flour films at a ratio of 70:30 with sorbitol 30% (w/w) had the highest tensile strength which related to folding endurance of the films.
文摘Usually, the maize cob is formed by grains of medium size. However, the extremes have larger or smaller size grains. The objective of this study was to investigate the influence of grain size from the same hybrid on the physicochemical properties of isolated starch, crude maize flours and nixtamalized maize flours. Two hybrids, one from CIMMyT-Mexico called IMIC-254 and one commercial sample from Monsanto (Puma) were studied. The isolated starch granules from small, medium, and large grains exhibit the same size and distribution. The grain size has influence in the determination of cooking and steeping times;small grains reach these parameters faster than medium and large ones. The hardness of the grain size for both hybrids does not showed statistical differences between them. The starch from small, medium and large grains is mainly composed of amylopectin;this result is confirmed by X-ray diffraction and Megazine analysis. The apparent viscosity of the isolated starches of small grains showed statistically significant higher peak values. According to these results, it is possible to use small, medium, and large grains to obtain products with the same physicochemical properties, by adjusting the cooking and steeping times and Ca2+ content.
文摘The starches were isolated by alkaline extraction from white and red sorghum, predominant cultivars in the Sahara of Algeria. Morphological, thermal properties and amylose content of isolated starches were examined. The starches of two sorghum landraces of white and pigmented kernels growing in hyper arid environmental conditions showed significant differences in granule size, amylose content and thermal behavior which ultimately affect the physicochemical and functional properties. When observed using environmental scanning electron microscopy (ESEM). The starch granules showed polyhedral shape. Some of them showed pinholes. The granular size ranged between 6.325-39.905 μm and 7.096-44.774 μm, respectively for white and red sorghum starches. The granule size distribution was unimodal. The amylose content in white sorghum starch (27.1%) was higher than that in red sorghum (24.8%). Differential scanning calorimetry (DSC) analysis revealed that sorghum starches present higher temperatures at the peak (70.60℃ and 72.28℃ for white and red sorghum starches, respectively) and lower gelatinization enthalpies (9.087 J/g and 8.270 J/g for white and red sorghum starches, respectively) than other cereal starches. The determination of these properties is relevant to the comprehension of starch and starch-based foods digestibility in order to direct them towards the specific applications in food and nonfood sectors.
基金Supported by the National Natural Science Foundation of China(No.31701552)Leading Talents Support Program of Science and Technology Innovation in Fujian Province(KRC16002A)Excellent Talents Support Program of Colleges and Universities in Fujian Province(JA14094)
文摘The objective of this work was to investigate and compare the structural and physicochemical properties of Dioscorea opposita Thunb. flour(DF), starch(DS) and purified starch(PDS). DS and PDS showed higher total starch and amylose content as compared to DF. Starch granules of DF were oval shape with rough surface while DS and PDS were relatively smooth by SEM. According to XRD measurements, FT-IR spectroscopy and 13 C CP/MAS NMR spectroscopy, all samples displayed C-type crystalline pattern, and PDS displayed the highest relative crystallinity and short-range order structure. However, DF contained the greatest content of the amorphous-phase. DF displayed the absorption peaks at 1730 and 1560 cm^-1 related to the characteristic groups of lipid and protein using FT-IR spectroscopy. Furthermore, DF exhibited significantly higher pasting temperature while DS displayed the great peak and breakdown viscosity, as well as PDS had the highest setback and final viscosity, presumably due to the chemical composition and structural differences. DF exhibited the highest gelatinization temperature whereas PDS displayed the greatest gelatinization enthalpy. The pasting and gelatinization properties of flour and starch might be related to the relative crystallinity, short-range order structure or the interactions between starch and its associated compounds. The results allow the improvement in the manufacture of Dioscorea opposita Thunb. flour and starch with desirable pasting and gelatinization properties.
文摘Drilling mud is a key component in drilling operations and in accessing oil and gas reservoirs. Bentonite is applied as a viscosifier, fluid loss control agent, and as a weighting material in water-based drilling mud. The type of bentonite used in drilling mud formulation is sodium bentonite due to its high dispersion properties and high swelling capacity. Nigeria has a huge bentonite clay deposit resources which can be evaluated and enhanced in order to be utilized as drilling mud. However, bentonite clay from different parts of Nigeria was investigated and found to be calcium bentonite which is not suitable for drilling mud, because it has low swelling capacity and poor rheological properties. In this study, local bentonite obtained from Afuze, Edo state was used to formulate different samples of drilling mud with each treated using thermo-chemical beneficiation process with sodium carbonate and cassava starch, and then undergo characterization to identify the changes in physical properties and finally, draw comparison with API values for standard drilling mud. The results obtained from this study indicates that, the flow and rheological properties of the beneficiated drilling mud developed through thermo-chemical treatment, showed significant improvement compared to the untreated mud. Therefore, pure calcium bentonite from natural deposits in Nigeria can be modified to sodium bentonite and sufficiently used in drilling mud formulation.
基金Project supported by the Hi-Tech Research and Development Pro-gram (863) of China (No. 2004AA241180), and the Scientific Re-search Foundation for the Returned Overseas Chinese Scholars of State Education Ministry, and the Science and Technology Depart-ment of Zhejiang Province, China
文摘Sweetpotato starch thermal properties and its noodle quality were analyzed using a rapid predictive method based on near-infrared spectroscopy (NIRS). This method was established based on a total of 93 sweetpotato genotypes with diverse genetic background. Starch samples were scanned by NIRS and analyzed for quality properties by reference methods. Results of statistical modelling indicated that NIRS was reasonably accurate in predicting gelatinization onset temperature (To) (standard error of prediction SEP=2.014 ℃, coefficient of determination RSQ=0.85), gelatinization peak temperature (Tp) (SEP=-1.371 ℃, RSQ=0.89), gelatinization temperature range (Tr) (SEP=2.234 ℃, RSQ=0.86), and cooling resistance (CR) (SEP=0.528, RSQ=0.89). Gelatinization completion temperature (To), enthalpy of gelatinization (△H), cooling loss (CL) and swelling degree (SWD), were modelled less well with RSQ between 0.63 and 0.84. The present results suggested that the NIRS based method was sufficiently accurate and practical for routine analysis of sweetpotato starch and its noodle quality.
基金the Chinese Ministry of Agriculture(Grant No.2016ZX08001006)Science Technology Department of Zhejiang Province,China(Grant Nos.2016C02052-6,C02058-4,2017C02019 and 2018C02055)。
文摘With changes in food preferences and life styles,more and more attentions have been focused on healthier food.Nowadays,resistant starch(RS)which can resist digestion in the human intestine has been recognized and accepted.High RS diet shows great benefit for the human health,and breeding high RS rice variety is a great target for realizing dietary intervention.To provide guidance for RS improvement in rice,this review summarized the unique physiochemical properties of RS and the possible approaches,i.e.genetic regulation,for enhancing RS content in rice,and proposed the potential ways to obtain rice variety with high RS content.
基金Funded by the National Forestry Public Welfare Industry Major Projects of Scientific Research(No.201504502)National Natural Science Foundation of China(No.31200442)Supported by the Post Doctorate Research from the Ministry of Science and Technology of China(No.2014M550178)
文摘Starch/polylactic acid(PLA) composites were prepared by melt extrusion, with corn starch and PLA as raw materials, glycerol as the plasticizer. Effects of starch/PLA ratio on the interdependence of two-phase and other properties of the composites were studied. The combination of results of TGA with SEM indicated that the interdependence between starch and PLA was increased gradually as the starch/PLA ratio reduced. DSC results showed that the glass transition temperature(Tg), melting temperature(Tm) and degree of crystallinity of PLA in composites were increased gradually, whereas the cold crystallization temperature(Tc) was gradually decreased as the starch/PLA ratio reduced. The rheological properties of composites were closely related with the interdependence of two-phase, with reducing starch/PLA proportion, the interdependence was increased, and then the strain for storage modulus was firstl reduced and then gradually increased. Frequency scanning showed that the storage modulus and complex viscosity were decreased with reducing starch content. As the starch/PLA ratio reduced, the matrix phase PLA was increased, so that the strength of composites was increased gradually, whereas water absorption rate was decreased gradually.