[ Objective] To investigate the feasibility of the primary culture of bovine mammary epithelial cells in biochemical incubator. [ Method] In vitro, bovine mammary epithelial cells were isolated and cultured by the tis...[ Objective] To investigate the feasibility of the primary culture of bovine mammary epithelial cells in biochemical incubator. [ Method] In vitro, bovine mammary epithelial cells were isolated and cultured by the tissue explant method in order to investigate the optimal culture conditions. The morphology observation and identification of the cultured cells were performed by inverted microscope observation, Giemsa staining and cytokeratin immunohistochemistry. [ Result] Observed with inverted microscope, most of the bovine mammary epithelial cells were polygonal and displayed typical slabstone-like appearance. As it can be seen from cell staining results, the cell body was big and the nucleus was stained dark blue and was round or oval in shape, with clearly visible nucleoli, generally 2 -4 nucleoli. The tissue-specific expression of cytokeratin 14 and cytokeratin 18 genes in mammary epithelial cells was identified by cytokeratin immunohistochemistry. [ Conclusion] Primary bovine mammary epithelial cells were successfully cultured in biochemical incubator.展开更多
Cellular agriculture is an innovative technology for manufacturing sustainable agricultural products as an alternative to traditional agriculture.While most cellular agriculture is predominantly centered on the produc...Cellular agriculture is an innovative technology for manufacturing sustainable agricultural products as an alternative to traditional agriculture.While most cellular agriculture is predominantly centered on the production of cultured meat,there is a growing demand for an understanding of the production techniques involved in dairy products within cellular agriculture.This review focuses on the current status of cellular agriculture in the dairy sector and technical challenges for cell-cultured milk production.Cellular agriculture technology in the dairy sector has been classified into fermentation-based and animal cell culture-based cellular agriculture.Currently,various companies synthesize milk components through precision fermentation technology.Nevertheless,several startup companies are pursuing animal cell-based technology,driven by public concerns regarding genetically modified organisms in precision fermentation technology.Hence,this review offers an up-to-date exploration of animal cell-based cellular agriculture to produce milk components,specifically emphasizing the structural,functional,and productive aspects of mammary epithelial cells,providing new information for industry and academia.展开更多
The purpose of this study was to compare cell growth characteristics,ciliated cell differentiation,and function of human nasal epithelial cells established as explant outgrowth cultures or dissociated tissue cultures....The purpose of this study was to compare cell growth characteristics,ciliated cell differentiation,and function of human nasal epithelial cells established as explant outgrowth cultures or dissociated tissue cultures.Human nasal mucosa of the uncinate process was obtained by endoscopy and epithelial cell cultures were established by explant outgrowth or dissociated tissue culture methods.Epithelial cell growth characteristics were observed by inverted phase contrast microscopy.Ciliated cell differentiation was detected byβ-tubulin IV and ZO-1 immunocytochemistry.Basal and ATP-stimulated ciliary beat frequency(CBF)was measured using a high-speed digital microscopic imaging system.Both the explant and dissociated tissue cultures established as monolayers with tight junctions and differentiated cell composition,with both types of cultures comprising ciliated and non-ciliated epithelial cells.Fibroblasts were also frequently found in explant cultures but rarely seen in dissociated tissue cultures.In both culture systems,the highest ciliated cell density appeared at 7th–10th culture day and declined with time,with the lifespan of ciliated cells ranging from 14 to 21 days.Overall,10%of the cells in explant cultures and 20%of the cells in the dissociated tissue cultures were ciliated.These two cultures demonstrated similar ciliary beat frequency values at baseline(7.78±1.99 Hz and 7.91±2.52 Hz,respectively)and reacted equivalently following stimulation with 100μM ATP.The results of this study indicate that both the explant outgrowth and dissociated tissue culture techniques are suitable for growing well-differentiated nasal ciliated and non-ciliated cells,which have growth characteristics and ciliary activity similar to those of nasal epithelial cells in vivo.展开更多
OBJECTIVE: To observe the localization of adrenomedullin (AM) in rat kidney tissue and its inhibitory effect on the growth of cultured rat mesangial cells (MsC). METHODS: A monoclonal antibody against AM developed by ...OBJECTIVE: To observe the localization of adrenomedullin (AM) in rat kidney tissue and its inhibitory effect on the growth of cultured rat mesangial cells (MsC). METHODS: A monoclonal antibody against AM developed by our laboratory was used to detect the localization of AM protein in rat kidney tissue by avidin-biotin complex immunohistochemistry. The expressions of AM and its receptor CRLR mRNA on cultured glomerular epithelial cells (GEC) and MsC were investigated by Northern blot assay, and the possible effect of AM secreted by GEC on MsC proliferation was observed using [3H]thymidine incorporation as an index. RESULTS: A specific monoclonal antibody against AM was succesfully developed. AM was immunohistochemically localized mainly in glomeruli (GEC and endothelial cells), some cortical proximal tubules, medullary collecting duct cells, interstitial cells, vascular smooth muscle cells and endothelial cells. Northern blot assay showed that AM mRNA was expressed only on cultured GEC, but not on MsC, however, AM receptor CRLR mRNA was only expressed on MsC. GEC conditioned medium containing AM can inhibit MsC growth and AM receptor blocker CGRP8-37 may partially decreased this inhibitory effect. CONCLUSION: AM produced by GEC inhibits the proliferation of MsC, which suggests that AM as an important regulator is involved in glomerular normal physiological functions and pathologic processes.展开更多
High incidence of traditional and emerging Fusarium mycotoxins in cereal grains and silages can be a potential threat to feed safety and ruminants.Inadequate biodegradation of Fusarium mycotoxins by rumen microflora f...High incidence of traditional and emerging Fusarium mycotoxins in cereal grains and silages can be a potential threat to feed safety and ruminants.Inadequate biodegradation of Fusarium mycotoxins by rumen microflora following ingestion of mycotoxin-contaminated feeds can lead to their circulatory transport to target tissues such as mammary gland.The bovine udder plays a pivotal role in maintaining milk yield and composition,thus,human health.However,toxic effects of Fusarium mycotoxins on bovine mammary gland are rarely studied.In this study,the bovine mammary epithelial cell line was used as an in-vitro model of bovine mammary epithelium to investigate effects of deoxynivalenol(DON),enniatin B(ENB)and beauvericin(BEA)on bovine mammary gland homeostasis.Results indicated that exposure to DON,ENB and BEA for 48 h significantly decreased cell viability in a concentration-dependent manner(P<0.001).Exposure to DON at 0.39μmol/L and BEA at 2.5μmol/L for 48 h also decreased paracellular flux of FITC-40 kDa dextran(P<0.05),whereas none of the mycotoxins affected transepithelial electrical resistance after 48 h exposure.The qPCR was performed for assessment of expression of gene coding tight junction(TJ)proteins,toll-like receptor 4(TLR4)and cytokines after 4,24 and 48 h of exposure.DON,ENB and BEA significantly upregulated the TJ protein zonula occludens-1,whereas markedly downregulated claudin 3(P<0.05).Exposure to DON at 1.35μmol/L for 4 h significantly increased expression of occludin(P<0.01).DON,ENB and BEA significant downregulated TLR4(P<0.05).In contrast,ENB markedly increased expression of cytokines interleukin-6(IL-6)(P<0.001),tumor necrosis factorα(TNF-a)(P<0.05)and transforming growth factor-β(TGF-β)(P<0.01).BEA significantly upregulated IL-6(P<0.001)and TGF-β(P=0.01),but downregulated TNF-α(P<0.001).These results suggest that DON,ENB and BEA can disrupt mammary gland homeostasis by inducing cell death as well as altering its paracellular permeability and expression of genes involved in innate immune function.展开更多
基金Supported by Natural Science Foundation of Inner Mongolia Autono-mous Region (200711020407)China Agricultural University and Inner Mongolia Agricultural University Cooperation Projects~~
文摘[ Objective] To investigate the feasibility of the primary culture of bovine mammary epithelial cells in biochemical incubator. [ Method] In vitro, bovine mammary epithelial cells were isolated and cultured by the tissue explant method in order to investigate the optimal culture conditions. The morphology observation and identification of the cultured cells were performed by inverted microscope observation, Giemsa staining and cytokeratin immunohistochemistry. [ Result] Observed with inverted microscope, most of the bovine mammary epithelial cells were polygonal and displayed typical slabstone-like appearance. As it can be seen from cell staining results, the cell body was big and the nucleus was stained dark blue and was round or oval in shape, with clearly visible nucleoli, generally 2 -4 nucleoli. The tissue-specific expression of cytokeratin 14 and cytokeratin 18 genes in mammary epithelial cells was identified by cytokeratin immunohistochemistry. [ Conclusion] Primary bovine mammary epithelial cells were successfully cultured in biochemical incubator.
基金supported by a National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(No.2022R1A2C1008327)。
文摘Cellular agriculture is an innovative technology for manufacturing sustainable agricultural products as an alternative to traditional agriculture.While most cellular agriculture is predominantly centered on the production of cultured meat,there is a growing demand for an understanding of the production techniques involved in dairy products within cellular agriculture.This review focuses on the current status of cellular agriculture in the dairy sector and technical challenges for cell-cultured milk production.Cellular agriculture technology in the dairy sector has been classified into fermentation-based and animal cell culture-based cellular agriculture.Currently,various companies synthesize milk components through precision fermentation technology.Nevertheless,several startup companies are pursuing animal cell-based technology,driven by public concerns regarding genetically modified organisms in precision fermentation technology.Hence,this review offers an up-to-date exploration of animal cell-based cellular agriculture to produce milk components,specifically emphasizing the structural,functional,and productive aspects of mammary epithelial cells,providing new information for industry and academia.
基金supported by the National Science Fund for Distinguished Young Scholars(Grant No.81025007)National Natural Science Foundation of China(Grant Nos.81100704,30973282)+4 种基金Beijing Natural Science Foundation(7131006),Ministry of Health Foundation(201202005)Beijing Nova Program(Z111107054511061)Specialized Research Fund for the Doctoral Program of Higher Education of China(20111107120004)The Capital Health Research and Development of Special(2011-1017-03)Science Foundation for High-Level Medical Talents of Beijing Health System(2009-02-007).
文摘The purpose of this study was to compare cell growth characteristics,ciliated cell differentiation,and function of human nasal epithelial cells established as explant outgrowth cultures or dissociated tissue cultures.Human nasal mucosa of the uncinate process was obtained by endoscopy and epithelial cell cultures were established by explant outgrowth or dissociated tissue culture methods.Epithelial cell growth characteristics were observed by inverted phase contrast microscopy.Ciliated cell differentiation was detected byβ-tubulin IV and ZO-1 immunocytochemistry.Basal and ATP-stimulated ciliary beat frequency(CBF)was measured using a high-speed digital microscopic imaging system.Both the explant and dissociated tissue cultures established as monolayers with tight junctions and differentiated cell composition,with both types of cultures comprising ciliated and non-ciliated epithelial cells.Fibroblasts were also frequently found in explant cultures but rarely seen in dissociated tissue cultures.In both culture systems,the highest ciliated cell density appeared at 7th–10th culture day and declined with time,with the lifespan of ciliated cells ranging from 14 to 21 days.Overall,10%of the cells in explant cultures and 20%of the cells in the dissociated tissue cultures were ciliated.These two cultures demonstrated similar ciliary beat frequency values at baseline(7.78±1.99 Hz and 7.91±2.52 Hz,respectively)and reacted equivalently following stimulation with 100μM ATP.The results of this study indicate that both the explant outgrowth and dissociated tissue culture techniques are suitable for growing well-differentiated nasal ciliated and non-ciliated cells,which have growth characteristics and ciliary activity similar to those of nasal epithelial cells in vivo.
文摘OBJECTIVE: To observe the localization of adrenomedullin (AM) in rat kidney tissue and its inhibitory effect on the growth of cultured rat mesangial cells (MsC). METHODS: A monoclonal antibody against AM developed by our laboratory was used to detect the localization of AM protein in rat kidney tissue by avidin-biotin complex immunohistochemistry. The expressions of AM and its receptor CRLR mRNA on cultured glomerular epithelial cells (GEC) and MsC were investigated by Northern blot assay, and the possible effect of AM secreted by GEC on MsC proliferation was observed using [3H]thymidine incorporation as an index. RESULTS: A specific monoclonal antibody against AM was succesfully developed. AM was immunohistochemically localized mainly in glomeruli (GEC and endothelial cells), some cortical proximal tubules, medullary collecting duct cells, interstitial cells, vascular smooth muscle cells and endothelial cells. Northern blot assay showed that AM mRNA was expressed only on cultured GEC, but not on MsC, however, AM receptor CRLR mRNA was only expressed on MsC. GEC conditioned medium containing AM can inhibit MsC growth and AM receptor blocker CGRP8-37 may partially decreased this inhibitory effect. CONCLUSION: AM produced by GEC inhibits the proliferation of MsC, which suggests that AM as an important regulator is involved in glomerular normal physiological functions and pathologic processes.
基金The authors acknowledge the financial contributions from the Natural Sciences and Engineering Research Council[401550]Alltech(United States)[054247]to this study.
文摘High incidence of traditional and emerging Fusarium mycotoxins in cereal grains and silages can be a potential threat to feed safety and ruminants.Inadequate biodegradation of Fusarium mycotoxins by rumen microflora following ingestion of mycotoxin-contaminated feeds can lead to their circulatory transport to target tissues such as mammary gland.The bovine udder plays a pivotal role in maintaining milk yield and composition,thus,human health.However,toxic effects of Fusarium mycotoxins on bovine mammary gland are rarely studied.In this study,the bovine mammary epithelial cell line was used as an in-vitro model of bovine mammary epithelium to investigate effects of deoxynivalenol(DON),enniatin B(ENB)and beauvericin(BEA)on bovine mammary gland homeostasis.Results indicated that exposure to DON,ENB and BEA for 48 h significantly decreased cell viability in a concentration-dependent manner(P<0.001).Exposure to DON at 0.39μmol/L and BEA at 2.5μmol/L for 48 h also decreased paracellular flux of FITC-40 kDa dextran(P<0.05),whereas none of the mycotoxins affected transepithelial electrical resistance after 48 h exposure.The qPCR was performed for assessment of expression of gene coding tight junction(TJ)proteins,toll-like receptor 4(TLR4)and cytokines after 4,24 and 48 h of exposure.DON,ENB and BEA significantly upregulated the TJ protein zonula occludens-1,whereas markedly downregulated claudin 3(P<0.05).Exposure to DON at 1.35μmol/L for 4 h significantly increased expression of occludin(P<0.01).DON,ENB and BEA significant downregulated TLR4(P<0.05).In contrast,ENB markedly increased expression of cytokines interleukin-6(IL-6)(P<0.001),tumor necrosis factorα(TNF-a)(P<0.05)and transforming growth factor-β(TGF-β)(P<0.01).BEA significantly upregulated IL-6(P<0.001)and TGF-β(P=0.01),but downregulated TNF-α(P<0.001).These results suggest that DON,ENB and BEA can disrupt mammary gland homeostasis by inducing cell death as well as altering its paracellular permeability and expression of genes involved in innate immune function.