随着高性能网络规模的增加,高阶路由器结构设计成为高性能计算研究的重点和热点。使用高阶路由器,网络能实现更低的报文传输延迟、网络功耗和网络构建成本,同时高阶路由器的应用还可以提高网络可靠性。高性能路由器的阶数不断提高,仅靠...随着高性能网络规模的增加,高阶路由器结构设计成为高性能计算研究的重点和热点。使用高阶路由器,网络能实现更低的报文传输延迟、网络功耗和网络构建成本,同时高阶路由器的应用还可以提高网络可靠性。高性能路由器的阶数不断提高,仅靠扩展单级crossbar交换结构的阶数使路由器内部的连线资源急速增长,交叉开关的实现代价将不可接受,这就需要为高阶路由器设计新型的交换结构。近十年来,出现了以YARC为代表的经典结构化设计以及"network within a network"等新型设计方法,未来的研究重点是解决高阶路由器结构设计中遇到的缓存、仲裁和扩展性等各种问题。鉴于此,实现了一种多级无缓存高阶路由器,这种高阶路由器内部是一个多级Clos网络,每一级有相应的仲裁模块对请求进行调度,数据包缓存在输入/输出端口实现,除去这些缓冲区单元,该网络是无缓存的。最后通过BookSim模拟器进行了大量的性能测试,所设计的路由器能够正常工作,性能良好。展开更多
文摘随着高性能网络规模的增加,高阶路由器结构设计成为高性能计算研究的重点和热点。使用高阶路由器,网络能实现更低的报文传输延迟、网络功耗和网络构建成本,同时高阶路由器的应用还可以提高网络可靠性。高性能路由器的阶数不断提高,仅靠扩展单级crossbar交换结构的阶数使路由器内部的连线资源急速增长,交叉开关的实现代价将不可接受,这就需要为高阶路由器设计新型的交换结构。近十年来,出现了以YARC为代表的经典结构化设计以及"network within a network"等新型设计方法,未来的研究重点是解决高阶路由器结构设计中遇到的缓存、仲裁和扩展性等各种问题。鉴于此,实现了一种多级无缓存高阶路由器,这种高阶路由器内部是一个多级Clos网络,每一级有相应的仲裁模块对请求进行调度,数据包缓存在输入/输出端口实现,除去这些缓冲区单元,该网络是无缓存的。最后通过BookSim模拟器进行了大量的性能测试,所设计的路由器能够正常工作,性能良好。