Remote sensing data have been widely applied to extract minerals in geologic exploration, however, in areas covered by vegetation, extracted mineral information has mostly been small targets bearing little information...Remote sensing data have been widely applied to extract minerals in geologic exploration, however, in areas covered by vegetation, extracted mineral information has mostly been small targets bearing little information. In this paper, we present a new method for mineral extraction aimed at solving the difficulty of mineral identification in vegetation covered areas. The method selected six sets of spectral difference coupling between soil and plant(SVSCD). These sets have the same vegetation spectra reflectance and a maximum different reflectance of soil and mineral spectra from Hyperion image based on spectral reflectance characteristics of measured spectra. The central wavelengths of the six, selected band pairs were 2314 and 701 nm, 1699 and 721 nm, 1336 and 742 nm, 2203 and 681 nm, 2183 and 671 nm, and 2072 and 548 nm. Each data set's reflectance was used to calculate the difference value. After band difference calculation, vegetation information was suppressed and mineral abnormal information was enhanced compared to the scatter plot of original band. Six spectral difference couplings, after vegetation inhibition, were arranged in a new data set that requires two components that have the largest eigenvalue difference from principal component analysis(PCA). The spatial geometric structure features of PC1 and PC2 was used to identify altered minerals by spectral feature fitting(SFF). The collecting rocks from the 10 points that were selected in the concentration of mineral extraction were analyzed under a high-resolution microscope to identify metal minerals and nonmetallic minerals. Results indicated that the extracted minerals were well matched with the verified samples, especially with the sample 2, 4, 5 and 8. It demonstrated that the method can effectively detect altered minerals in vegetation covered area in Hyperion image.展开更多
A novel constant interfacial area cell(NCIAC),by spatially separating the agitation from liquid flow circulation of organic and aqueous two phases,was suggested to obtain detailed kinetic data for Er(Ⅲ) extraction fr...A novel constant interfacial area cell(NCIAC),by spatially separating the agitation from liquid flow circulation of organic and aqueous two phases,was suggested to obtain detailed kinetic data for Er(Ⅲ) extraction from chloride medium by 2-ethyl-hexyl-phosphonic acid mono-(2-ethylhexyl) ester(EHEHPA).Different from the traditional Lewis cell and the constant interfacial area cell with laminar flow,the concentrations of Er(Ⅲ) in organic and aqueous two phases were uniform,and the stability of the interfacial area between the two phases could be controlled effectively.Therefore,the special requirements for the design of agitators in the traditional Lewis cell and the constant interfacial area cell for minimizing the influence of diffusion resistance could be avoided.Experimental results indicated that the extraction kinetics was mainly affected by the aqueous flow rate,interfacial area between organic and aqueous two phases,and the aqueous p H values.An extraction kinetic equation was suggested based on the experimental data.展开更多
Understanding the distribution and dynamics of glaciers is of great significance to the management and allocation of regional water resources and socio-economic development in arid regions of Northwest China.In this s...Understanding the distribution and dynamics of glaciers is of great significance to the management and allocation of regional water resources and socio-economic development in arid regions of Northwest China.In this study,based on 36 Landsat images,we extracted the glacier boundaries in the Manas River Basin,Northwest China from 2000 to 2020 using eCognition combined with band operation,GIS(geographic information system)spatial overlay techniques,and manual visual interpretation.We further analyzed the distribution and variation characteristics of glacier area,and simulated glacial runoff using a distributed degree-day model to explore the regulation of runoff recharge.The results showed that glacier area in the Manas River Basin as a whole showed a downward trend over the past 21 a,with a decrease of 10.86%and an average change rate of–0.54%/a.With the increase in glacier scale,the number of smaller glaciers decreased exponentially,and the number and area of larger glaciers were relatively stable.Glacier area showed a normal distribution trend of increasing first and then decreasing with elevation.About 97.92%of glaciers were distributed at 3700–4800 m,and 48.11%of glaciers were observed on the northern and northeastern slopes.The retreat rate of glaciers was the fastest(68.82%)at elevations below 3800 m.There was a clear rise in elevation at the end of glaciers.Glaciers at different slope directions showed a rapid melting trend from the western slope to the southern slope then to the northern slope.Glacial runoff in the basin showed a fluctuating upward trend in the past 21 a,with an increase rate of 0.03×10^(8) m^(3)/a.The average annual glacial runoff was 4.80×10^(8) m^(3),of which 33.31%was distributed in the ablation season(June–September).The average annual contribution rate of glacial meltwater to river runoff was 35.40%,and glacial runoff accounted for 45.37%of the total runoff during the ablation season.In addition,precipitation and glacial runoff had complementary regulation patterns for river runoff.The findings can provide a scientific basis for water resource management in the Manas River Basin and other similar arid inland river basins.展开更多
[Objectives] To study the optimal conditions for extracting procyanidins fromLycium ruthenicum Murr. with sub-critical fluid R134 a( 1,1,1,2-tetrafluoroethane) in 1 L extraction kettle. [Methods]Taking the extraction ...[Objectives] To study the optimal conditions for extracting procyanidins fromLycium ruthenicum Murr. with sub-critical fluid R134 a( 1,1,1,2-tetrafluoroethane) in 1 L extraction kettle. [Methods]Taking the extraction rate of procyanidins as an indicator,the influence of pressure,temperature,and extraction time on extraction rate of procyanidins fromL. Ruthenicum Murr. was studied by single factor experimental methods and orthogonal array design. [Results]The order of factors affecting extraction rate of procyanidins was extraction temperature > extraction pressure > extraction time. The optimum extraction conditions were as follows: the extraction rate of procyanidins fromL. ruthenicum Murr. was the highest with extraction pressure of 1. 2 MPa,extraction temperature of 50℃ and extraction time of 90 min. The content of procyanidins in L. ruthenicum Murr. from different producing areas was determined by vanillin-HCl method under the optimal conditions. [Conclusions] The method has the advantages of easy operation,good selectivity,low extraction temperature and high extraction efficiency,which is suitable for extraction of procyanidins in L. ruthenicum Murr.展开更多
The extraction kinetics of Ce(Ⅳ) and Ce(Ⅳ)-F^- mixture systems from sulfuric solutions to n-heptane solution containing Bif-ILE[A336][P204]([trialkylmethylammonium][di-2-ethylhewanxylphosphinate]) with a const...The extraction kinetics of Ce(Ⅳ) and Ce(Ⅳ)-F^- mixture systems from sulfuric solutions to n-heptane solution containing Bif-ILE[A336][P204]([trialkylmethylammonium][di-2-ethylhewanxylphosphinate]) with a constant interfacial area cell with laminar flow were studied,just to elucidate the extraction mechanism and the mass transfer models.The data were analyzed in terms of pseudo-first-order constants.The effects of stirring speed,specific interfacial area and temperature on the extraction rate in both systems were discussed,suggesting that the extractions were mixed bulk phases-interfacial control process.Supported by the experimental data,the corresponding rate equations for Ce(Ⅳ) extraction system and Ce(Ⅳ)-F^- mixture extraction system were obtained.The experimental results indicated the rate-controlling step.The kinetics model was deduced from the rate-controlling step and consistent with the rate equation.展开更多
The kinetics of solvent.extraction of aluminum with di-2-ethylhexyl phosphoric acid(DEHPA)in n-heptane have been studied in a constant interfacial area cell.A HC1-KHC8H404(potassium biphthalate.KHL)buffer solution was...The kinetics of solvent.extraction of aluminum with di-2-ethylhexyl phosphoric acid(DEHPA)in n-heptane have been studied in a constant interfacial area cell.A HC1-KHC8H404(potassium biphthalate.KHL)buffer solution was used to maintain a constant pH during extraction.The effects of the concentration of aluminum,pH,the concentration of the extractant,the interfacial area and the temperature on the extraction rate were investigated.A method has been invented to determine amont of the extracted aluminum in the organic phase with 8-hydroxyquinoline.Based on calculation of the coordination states of the aluminum ions and their contribution to the reaction rate,a raaction mechanism which includes two main reaction paths,has been proposed to describe the process.One path starts from Al(H_(2)O)6^(+).and the other starts from Al(H_(2)O)6^(+).The reaction could take place both in the aqueous phase and at the interface.The main reaction region could be changed as the conditions of extraction were changed.When[HA]<0.03 mol/L the process was controlled by the interfacial reaction,and when[HA]>0.03 mol/L it was shifted to a homogeneous aqueous solution reaction.展开更多
基金Under the auspices of National Science and Technology Major Project of China(No.04-Y20A35-9001-15/17)the Program for JLU Science and Technology Innovative Research Team(No.JLUSTIRT,2017TD-26)the Changbai Mountain Scholars Program,Jilin Province,China
文摘Remote sensing data have been widely applied to extract minerals in geologic exploration, however, in areas covered by vegetation, extracted mineral information has mostly been small targets bearing little information. In this paper, we present a new method for mineral extraction aimed at solving the difficulty of mineral identification in vegetation covered areas. The method selected six sets of spectral difference coupling between soil and plant(SVSCD). These sets have the same vegetation spectra reflectance and a maximum different reflectance of soil and mineral spectra from Hyperion image based on spectral reflectance characteristics of measured spectra. The central wavelengths of the six, selected band pairs were 2314 and 701 nm, 1699 and 721 nm, 1336 and 742 nm, 2203 and 681 nm, 2183 and 671 nm, and 2072 and 548 nm. Each data set's reflectance was used to calculate the difference value. After band difference calculation, vegetation information was suppressed and mineral abnormal information was enhanced compared to the scatter plot of original band. Six spectral difference couplings, after vegetation inhibition, were arranged in a new data set that requires two components that have the largest eigenvalue difference from principal component analysis(PCA). The spatial geometric structure features of PC1 and PC2 was used to identify altered minerals by spectral feature fitting(SFF). The collecting rocks from the 10 points that were selected in the concentration of mineral extraction were analyzed under a high-resolution microscope to identify metal minerals and nonmetallic minerals. Results indicated that the extracted minerals were well matched with the verified samples, especially with the sample 2, 4, 5 and 8. It demonstrated that the method can effectively detect altered minerals in vegetation covered area in Hyperion image.
基金Supported by the National Natural Science Foundation of China(51574213,51074150)the Key Project of Chinese National Programs for Fundamental Research and Development(2012CBA01203,2013CB632602)
文摘A novel constant interfacial area cell(NCIAC),by spatially separating the agitation from liquid flow circulation of organic and aqueous two phases,was suggested to obtain detailed kinetic data for Er(Ⅲ) extraction from chloride medium by 2-ethyl-hexyl-phosphonic acid mono-(2-ethylhexyl) ester(EHEHPA).Different from the traditional Lewis cell and the constant interfacial area cell with laminar flow,the concentrations of Er(Ⅲ) in organic and aqueous two phases were uniform,and the stability of the interfacial area between the two phases could be controlled effectively.Therefore,the special requirements for the design of agitators in the traditional Lewis cell and the constant interfacial area cell for minimizing the influence of diffusion resistance could be avoided.Experimental results indicated that the extraction kinetics was mainly affected by the aqueous flow rate,interfacial area between organic and aqueous two phases,and the aqueous p H values.An extraction kinetic equation was suggested based on the experimental data.
基金supported by the National Natural Science Foundation of China(52169005)the Support Plan for Innovation and Development of Key Industries in southern Xinjiang,China(2022DB024)the Corps Science and Technology Innovation Talents Program Project of China(2023CB008-08).
文摘Understanding the distribution and dynamics of glaciers is of great significance to the management and allocation of regional water resources and socio-economic development in arid regions of Northwest China.In this study,based on 36 Landsat images,we extracted the glacier boundaries in the Manas River Basin,Northwest China from 2000 to 2020 using eCognition combined with band operation,GIS(geographic information system)spatial overlay techniques,and manual visual interpretation.We further analyzed the distribution and variation characteristics of glacier area,and simulated glacial runoff using a distributed degree-day model to explore the regulation of runoff recharge.The results showed that glacier area in the Manas River Basin as a whole showed a downward trend over the past 21 a,with a decrease of 10.86%and an average change rate of–0.54%/a.With the increase in glacier scale,the number of smaller glaciers decreased exponentially,and the number and area of larger glaciers were relatively stable.Glacier area showed a normal distribution trend of increasing first and then decreasing with elevation.About 97.92%of glaciers were distributed at 3700–4800 m,and 48.11%of glaciers were observed on the northern and northeastern slopes.The retreat rate of glaciers was the fastest(68.82%)at elevations below 3800 m.There was a clear rise in elevation at the end of glaciers.Glaciers at different slope directions showed a rapid melting trend from the western slope to the southern slope then to the northern slope.Glacial runoff in the basin showed a fluctuating upward trend in the past 21 a,with an increase rate of 0.03×10^(8) m^(3)/a.The average annual glacial runoff was 4.80×10^(8) m^(3),of which 33.31%was distributed in the ablation season(June–September).The average annual contribution rate of glacial meltwater to river runoff was 35.40%,and glacial runoff accounted for 45.37%of the total runoff during the ablation season.In addition,precipitation and glacial runoff had complementary regulation patterns for river runoff.The findings can provide a scientific basis for water resource management in the Manas River Basin and other similar arid inland river basins.
基金Supported by 2016 Instrument Functional Development Project of Lanzhou Regional Center of Resources and Environmental Science Instrument,CAS(2018gl11)
文摘[Objectives] To study the optimal conditions for extracting procyanidins fromLycium ruthenicum Murr. with sub-critical fluid R134 a( 1,1,1,2-tetrafluoroethane) in 1 L extraction kettle. [Methods]Taking the extraction rate of procyanidins as an indicator,the influence of pressure,temperature,and extraction time on extraction rate of procyanidins fromL. Ruthenicum Murr. was studied by single factor experimental methods and orthogonal array design. [Results]The order of factors affecting extraction rate of procyanidins was extraction temperature > extraction pressure > extraction time. The optimum extraction conditions were as follows: the extraction rate of procyanidins fromL. ruthenicum Murr. was the highest with extraction pressure of 1. 2 MPa,extraction temperature of 50℃ and extraction time of 90 min. The content of procyanidins in L. ruthenicum Murr. from different producing areas was determined by vanillin-HCl method under the optimal conditions. [Conclusions] The method has the advantages of easy operation,good selectivity,low extraction temperature and high extraction efficiency,which is suitable for extraction of procyanidins in L. ruthenicum Murr.
基金Project (2012CBA01202) supported by the National Basic Research Program of ChinaProject (51174184) supported by the National Natural Science Foundation of China+2 种基金Project (KGZD-EW-201-1) supported by the Key Research Program of the Chinese Academy of SciencesProject (BK2013030) supported by Science and Technology Plan of Nantong City,ChinaProject (RERU2014016) supported by Open Subject of Changchun Institute of Applied Chemistry,Chinese Academy of Sciences,China
文摘The extraction kinetics of Ce(Ⅳ) and Ce(Ⅳ)-F^- mixture systems from sulfuric solutions to n-heptane solution containing Bif-ILE[A336][P204]([trialkylmethylammonium][di-2-ethylhewanxylphosphinate]) with a constant interfacial area cell with laminar flow were studied,just to elucidate the extraction mechanism and the mass transfer models.The data were analyzed in terms of pseudo-first-order constants.The effects of stirring speed,specific interfacial area and temperature on the extraction rate in both systems were discussed,suggesting that the extractions were mixed bulk phases-interfacial control process.Supported by the experimental data,the corresponding rate equations for Ce(Ⅳ) extraction system and Ce(Ⅳ)-F^- mixture extraction system were obtained.The experimental results indicated the rate-controlling step.The kinetics model was deduced from the rate-controlling step and consistent with the rate equation.
基金supported by China National Natural Science Foundation。
文摘The kinetics of solvent.extraction of aluminum with di-2-ethylhexyl phosphoric acid(DEHPA)in n-heptane have been studied in a constant interfacial area cell.A HC1-KHC8H404(potassium biphthalate.KHL)buffer solution was used to maintain a constant pH during extraction.The effects of the concentration of aluminum,pH,the concentration of the extractant,the interfacial area and the temperature on the extraction rate were investigated.A method has been invented to determine amont of the extracted aluminum in the organic phase with 8-hydroxyquinoline.Based on calculation of the coordination states of the aluminum ions and their contribution to the reaction rate,a raaction mechanism which includes two main reaction paths,has been proposed to describe the process.One path starts from Al(H_(2)O)6^(+).and the other starts from Al(H_(2)O)6^(+).The reaction could take place both in the aqueous phase and at the interface.The main reaction region could be changed as the conditions of extraction were changed.When[HA]<0.03 mol/L the process was controlled by the interfacial reaction,and when[HA]>0.03 mol/L it was shifted to a homogeneous aqueous solution reaction.