Large-scale public buildings have high energy density, which on average consume 5 to 15 times more electricity than residential buildings. In Beijing, those public buildings account for about ten percent of the total ...Large-scale public buildings have high energy density, which on average consume 5 to 15 times more electricity than residential buildings. In Beijing, those public buildings account for about ten percent of the total building area, but their energy consumption (except heating) amounts to more than thirty percent of the total. Few electric meters are installed in those public buildings, however, making it more difficult to monitor how the energy is used.展开更多
Given the ability of building information models (BIM) to serve as a multidisciplinary data repository, this study attempts to explore and exploit the sustainability value of BIM in delivering buildings that require...Given the ability of building information models (BIM) to serve as a multidisciplinary data repository, this study attempts to explore and exploit the sustainability value of BIM in delivering buildings that require less energy for operations, emit tess carbon dioxide, and provide conducive living environments for occupants. This objective was attained by a critical and extensive literature review that covers the following: (1) building energy consumption, (2) building energy performance and analysis, and (3) BIM and energy assessment. Literature cited in this paper shows that linking an energy analysis toot with a BIM model has helped project design teams to predict and create optimized energy consumption by conducting building energy performance analysis utilizing key performance indicators on average thermal transmitters, resulting heat demand, lighting power, solar heat gains, and ventilation heat losses. An in-depth analysis was conducted on a completed BIM integrated construction project utilizing the Arboleda Project in the Dominican Republic to validate the aforementioned findings. Results show that the BIM-based energy analysis helped the design team attain the world's first positive energy building. This study concludes that linking an energy analysis tool with a BIM model helps to expedite the energy analysis process, provide more detailed and accurate results, and deliver energy-efficient buildings. This study further recommends that the adoption of level 2 BIM and BIM integration in energy optimization analysis must be demanded by building regulatory agencies for all projects regardless of procurement method (i.e., government funded or otherwise) or size.展开更多
文摘Large-scale public buildings have high energy density, which on average consume 5 to 15 times more electricity than residential buildings. In Beijing, those public buildings account for about ten percent of the total building area, but their energy consumption (except heating) amounts to more than thirty percent of the total. Few electric meters are installed in those public buildings, however, making it more difficult to monitor how the energy is used.
文摘Given the ability of building information models (BIM) to serve as a multidisciplinary data repository, this study attempts to explore and exploit the sustainability value of BIM in delivering buildings that require less energy for operations, emit tess carbon dioxide, and provide conducive living environments for occupants. This objective was attained by a critical and extensive literature review that covers the following: (1) building energy consumption, (2) building energy performance and analysis, and (3) BIM and energy assessment. Literature cited in this paper shows that linking an energy analysis toot with a BIM model has helped project design teams to predict and create optimized energy consumption by conducting building energy performance analysis utilizing key performance indicators on average thermal transmitters, resulting heat demand, lighting power, solar heat gains, and ventilation heat losses. An in-depth analysis was conducted on a completed BIM integrated construction project utilizing the Arboleda Project in the Dominican Republic to validate the aforementioned findings. Results show that the BIM-based energy analysis helped the design team attain the world's first positive energy building. This study concludes that linking an energy analysis tool with a BIM model helps to expedite the energy analysis process, provide more detailed and accurate results, and deliver energy-efficient buildings. This study further recommends that the adoption of level 2 BIM and BIM integration in energy optimization analysis must be demanded by building regulatory agencies for all projects regardless of procurement method (i.e., government funded or otherwise) or size.