期刊文献+
共找到3,406篇文章
< 1 2 171 >
每页显示 20 50 100
Assessment of PV Shading Device on Building Energy Consumption Taking into Account Site Layout
1
作者 Maria Carla Di Vincenzo Dilay Kesten David Infield 《Journal of Energy and Power Engineering》 2012年第3期346-352,共7页
关键词 光伏组件 建筑能耗 设备 遮阳 评估 网站 帐户 周围建筑物
下载PDF
Analysis and forecast of residential building energy consumption in Chongqing on carbon emissions 被引量:2
2
作者 李沁 刘猛 钱发 《Journal of Central South University》 SCIE EI CAS 2009年第S1期214-218,共5页
Carbon emissions mainly result from energy consumption. Carbon emissions inevitably will increase to some extent with economic expansion and rising energy consumption. We introduce a gray theory of quantitative analys... Carbon emissions mainly result from energy consumption. Carbon emissions inevitably will increase to some extent with economic expansion and rising energy consumption. We introduce a gray theory of quantitative analysis of the energy consumption of residential buildings in Chongqing,China,on the impact of carbon emission factors. Three impacts are analyzed,namely per capita residential housing area,domestic water consumption and the rate of air conditioner ownership per 100 urban households. The gray prediction model established using the Chongqing carbon emission-residential building energy consumption forecast model is sufficiently accurate to achieve a measure of feasibility and applicability. 展开更多
关键词 carbon emissions FACTOR analysis GRAY prediction model RESIDENTIAL building energy consumption
下载PDF
Efficiency-based Pareto Optimization of Building Energy Consumption and Thermal Comfort:A Case Study of a Residential Building in Bushehr,Iran
3
作者 Masoud NASOURI Navid DELGARM 《Journal of Thermal Science》 SCIE EI CAS CSCD 2024年第3期1037-1054,共18页
In Iran,the intensity of energy consumption in the building sector is almost 3 times the world average,and due to the consumption of fossil fuels as the main source of energy in this sector,as well as the lack of opti... In Iran,the intensity of energy consumption in the building sector is almost 3 times the world average,and due to the consumption of fossil fuels as the main source of energy in this sector,as well as the lack of optimal design of buildings,it has led to excessive release of toxic gases into the environment.This research develops an efficient approach for the simulation-oriented Pareto optimization(SOPO)of building energy efficiency to assist engineers in optimal building design in early design phases.To this end,EnergyPlus,as one of the most powerful and well-known whole-building simulation programs,is combined with the Multi-objective Ant Colony Optimization(MOACO)algorithm through the JAVA programming language.As a result,the capabilities of JAVA programming are added to EnergyPlus without the use of other plugins and third parties.To evaluate the effectiveness of the developed method,it was performed on a residential building located in the hot and semi-arid region of Iran.To obtain the optimum configuration of the building under investigation,the building rotation,window-to-wall ratio,tilt angle of shading device,depth of shading device,color of the external walls,area of solar collector,tilt angle of solar collector,rotation of solar collector,cooling and heating setpoints of heating,ventilation,and air conditioning(HVAC)system are chosen as decision variables.Further,the building energy consumption(BEC),solar collector efficiency(SCE),and predicted percentage of dissatisfied(PPD)index as a measure of the occupants'thermal comfort level are chosen as the objective functions.The single-objective optimization(SO)and Pareto optimization(PO)are performed.The obtained results are compared to the initial values of the basic model.The optimization results depict that the PO provides optimal solutions more reliable than those obtained by the SOs,owing to the lower value of the deviation index.Moreover,the optimal solutions extracted through the PO are depicted in the form of Pareto fronts.Eventually,the Linear Programming Technique for Multidimensional Analysis of Preference(LINMAP)technique as one of the well-known multi-criteria decision-making(MCDM)methods is utilized to adopt the optimum building configuration from the set of Pareto optimal solutions.Further,the results of PO show that although BEC increases from 136 GJ to 140 GJ,PPD significantly decreases from 26%to 8%and SCE significantly increases from 16%to 25%.The introduced SOPO method suggests an effective and practical approach to obtain optimal solutions during the building design phase and provides an opportunity for building engineers to have a better picture of the range of options for decision-making.In addition,the method presented in this study can be applied to different types of buildings in different climates. 展开更多
关键词 building energy consumption thermal comfort collector efficiency simulation-oriented pareto optimization
原文传递
Influence of urban morphological factors on building energy consumption combined with photovoltaic potential: A case study of residential blocks in central China 被引量:1
4
作者 Shen Xu Mengcheng Sang +3 位作者 Mengju Xie Feng Xiong Thushini Mendis Xingwei Xiang 《Building Simulation》 SCIE EI CSCD 2023年第9期1777-1792,共16页
Studies on urban energy have been growing in interest,and past research has mostly been focused on studies of urban solar potential or urban building energy consumption independently.However,holistic research on the c... Studies on urban energy have been growing in interest,and past research has mostly been focused on studies of urban solar potential or urban building energy consumption independently.However,holistic research on the combination of urban building energy consumption and solar potential at the urban block-scale is required in order to minimize energy use and maximize solar power generation simultaneously.The aim of this study is to comprehensively evaluate the impact of urban morphological factors on photovoltaic(PV)potential and building energy consumption.Firstly,58 residential blocks were classified into 6 categories by k-means clustering.Secondly,3 energy performance factors,which include the energy use intensity(EUI),the energy use intensity combined with PV potential(EUI-PV),and photovoltaic substitution rate(PSR)were calculated for these blocks.The study found that the EUI of the Small Length&High Height blocks was the lowest at around 30 kWh/(m^(2)·y),while the EUI-PV of the Small Length&Low Height blocks was the lowest at around 4.45 kWh/(m^(2)·y),and their PSR was the highest at 87%.Regression modelling was carried out,and the study concluded that the EUI of residential blocks was mainly affected by shape factor,building density and floor area ratio,while EUI-PV and PSR were mainly affected by height and sky view factor.In this study,the results and developed methodology are helpful to provide recommendations and strategies for sustainable planning of residential blocks in central China. 展开更多
关键词 urban morphological factors residential blocks building energy consumption photovoltaic potential regression models
原文传递
Evaluation of Energy Efficiency Performance of Heated Windows
5
作者 Hari Swarup Jammulamadaka Bhaskaran Gopalakrishnan +3 位作者 Subodh Chaudhari Senthil Sundaramoorthy Akash Rajesh Mehta Roseline Mostafa 《Energy Engineering》 EI 2022年第1期1-16,共16页
Fenestration systems are widely used across the world.There is expansive research on window configurations,frames,and glazing technology,but not enough research has been published on reducing window heat loss through ... Fenestration systems are widely used across the world.There is expansive research on window configurations,frames,and glazing technology,but not enough research has been published on reducing window heat loss through heat application to a pane.The presented study attempted to evaluate the performance of heated windows by developing an experimental setup to test a window at various temperatures by varying the power input to thewindow.Heated double pane window was installed in an insulated box.Atemperature gradient was developed across the window by cooling one side of the window using gel-based ice packs.The other face of the window was heated by enabling power at different wattages through the window.The temperature of the inside and outside panes,current and voltage input,and temperature of the room and box were recorded.The data was used to calculate the apparent effective resistance of the window when not being heated vs.when being heated.The study concluded that,when window temperature was maintained close to the room temperature,the heated double pane window is effective in reducing heat loss by as much as 50%as compared to a non-heated double pane window.When temperature of the window was much higher than the room temperature,the heat loss through the window increased beyond that of a non-heated window.The issues encountered during the current stages of experiments are noted,and recommendations are provided for future studies. 展开更多
关键词 Heated windows perimeter heating window efficiency building energy models floor heating
下载PDF
Multi-Time Scale Optimal Scheduling of a Photovoltaic Energy Storage Building System Based on Model Predictive Control
6
作者 Ximin Cao Xinglong Chen +2 位作者 He Huang Yanchi Zhang Qifan Huang 《Energy Engineering》 EI 2024年第4期1067-1089,共23页
Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a ... Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a multi-time scale optimal scheduling strategy based on model predictive control(MPC)is proposed under the consideration of load optimization.First,load optimization is achieved by controlling the charging time of electric vehicles as well as adjusting the air conditioning operation temperature,and the photovoltaic energy storage building system model is constructed to propose a day-ahead scheduling strategy with the lowest daily operation cost.Second,considering inter-day to intra-day source-load prediction error,an intraday rolling optimal scheduling strategy based on MPC is proposed that dynamically corrects the day-ahead dispatch results to stabilize system power fluctuations and promote photovoltaic consumption.Finally,taking an office building on a summer work day as an example,the effectiveness of the proposed scheduling strategy is verified.The results of the example show that the strategy reduces the total operating cost of the photovoltaic energy storage building system by 17.11%,improves the carbon emission reduction by 7.99%,and the photovoltaic consumption rate reaches 98.57%,improving the system’s low-carbon and economic performance. 展开更多
关键词 Load optimization model predictive control multi-time scale optimal scheduling photovoltaic consumption photovoltaic energy storage building
下载PDF
Global technological advancement and challenges of glazed window,facade system and vertical greenery-based energy savings in buildings:A comprehensive review 被引量:1
7
作者 M.Washim Akram M.Hasannuzaman +1 位作者 Erdem Cuce Pinar Mert Cuce 《Energy and Built Environment》 2023年第2期206-226,共21页
There are many factors that have a major influence on reducing the energy expenditure in building sector.This research aims at qualitative and quantitative assessment of those factors such as double glazed windows,ver... There are many factors that have a major influence on reducing the energy expenditure in building sector.This research aims at qualitative and quantitative assessment of those factors such as double glazed windows,ver-tical greenery systems(VGS),integrating of semi-transparent photovoltaic device with architectural design of buildings,energy saving by using heat reflecting coating,passive climate control methods,energy saving by shading,building energy performance enhancement by using optimisation technique,double skin green facade,etc.through a holistic and thematic approach.Amongst the aforesaid techniques,VGS is found the most reliable,efficient and sustainable solution.Attractive VGS can improve the urban environment,increase biodiversity,mit-igate pollution also results economic benefit of the buildings as like as energy savings and decreasing surface temperature.Four fundamental energy saving methods are used in VGS which are considered as passive energy saving mechanism.Firstly,interception of solar radiation due to the shadow risen by the vegetation;secondly,vegetation also provides thermal insulation;thirdly,plants evapotranspiration helps for evaporative cooling of building;finally,building blockage makes a variation of wind effect on building.The peak cooling load of ivy coated green building wall has been reduced by 28%.If a VGS is installed without windows and building fac-ing on west,east,south and north correspondingly,the reduction in the cooling load capacity of the building is observed to be up to 20,18,8 and 5%,respectively.Very high thermally resistive glazed areas on building envelope can be secured via thin film PV glazing and vacuum glazing products with an average U-value of 1.1 and 0.4 W/m 2 K,respectively.Energy use policies are also helpful to improve energy consumption scenario of buildings.For developing more energy-efficient,sustainable and eco-friendly buildings,these techniques might be helpful for the building designers and architects. 展开更多
关键词 building energy consumption energy saving Vertical greenery Green facade
原文传递
Federated learning-based short-term building energy consumption prediction method for solving the data silos problem 被引量:3
8
作者 Junyang Li Chaobo Zhang +3 位作者 Yang Zhao Weikang Qiu Qi Chen Xuejun Zhang 《Building Simulation》 SCIE EI CSCD 2022年第6期1145-1159,共15页
Transfer learning is an effective method to predict the energy consumption of information-poor buildings by learning transferable knowledge from operational data of information-rich buildings.However,it is not recomme... Transfer learning is an effective method to predict the energy consumption of information-poor buildings by learning transferable knowledge from operational data of information-rich buildings.However,it is not recommended to directly use the operational data without protection due to the risk of leaking occupants’privacy.To address this problem,this study proposes a federated learning-based method to learn transferable knowledge from building operational data without privacy leaking.It trains a transferable federated model based on the operational data from the buildings similar to the target building with limited data.An advanced secure aggregation algorithm is adopted in the training process to ensure that no one can infer private information from the training data.The federated model obtained is evaluated by comparing it with the standalone model without federated learning based on 13 similar office buildings from the Building Data Genome Project.The results show that the federated model outperforms the standalone model concerning the prediction accuracy and training time.On average,the federated model achieves a 25.4%decrease in CV-RMSE when the target building has limited operational data.Even if the target building has no operational data,the federated model still achieves acceptable accuracy(CV-RMSE is 22.2%).Meanwhile,the training time of the federated model is 90%less than that of the standalone model.The research insights can help develop federated learning-based methods for solving the data silos problem in building energy management.The methodology and analysis procedures are reproducible and all codes and data sets are available on Github. 展开更多
关键词 building energy consumption prediction federated learning transfer learning data privacy protection data silos
原文传递
Comparison of Energy Consumption of the 12 Classroom Typical School Buildings in Selected 4 City in Turkey
9
作者 Demet SARAC Zulkuf GUNELI 《Journal of Architectural Research and Development》 2019年第6期51-57,共7页
School is a special place where students come together to become productive individuals of society,acquire basic skills and acquire citizenship knowledge.With the introduction of the new education system(4+4+4)in Turk... School is a special place where students come together to become productive individuals of society,acquire basic skills and acquire citizenship knowledge.With the introduction of the new education system(4+4+4)in Turkey in 2012-2013,some difficulties occurred in the spatial structure of the schools.After the new system,increasing number of students and decreasing student requirements have been tried to be solved with temporary solutions.At the same time that millions of students studying in primary schools all over Turkey have the same architectural feature as one type of architectural school project,regardless of the geographical and social situation began to be implemented in all parts of the city.Therefore,the increase in consumption varies depending on the geographical reasons where the type projects are implemented.Selected regions of the four thermal zones in Turkey for this research are provided below:1^st Thermal district in Antalya;2^nd Thermal district in Bursa;3^rd Thermal district in Elaz??;4^th Thermal district in Kars.The calculation of the energy consumption created by the above cities by means of BEP-TR program and comparing classes. 展开更多
关键词 Typical school project Thermal districts Effective energy consumption building energy consumption BEP-TR
下载PDF
nfluence of envelope insulation materials on building energy consumption 被引量:2
10
作者 Junlan YANG Jiabao TANG 《Frontiers in Energy》 SCIE CSCD 2017年第4期575-581,共7页
In this paper, the influence of different external wall insulation materials on the energy consumption of a newly built apartment in Germany is investigated. Three types of insulation materials commonly used in German... In this paper, the influence of different external wall insulation materials on the energy consumption of a newly built apartment in Germany is investigated. Three types of insulation materials commonly used in Germany including mineral fiber, polyurethane, and vacuum insula- tion panel are chosen for the case studies. An energy analysis model is established to clarify the primary energy use for production of the insulation materials and for building space heating. The calculation results show that the energy consumption for insulation material production increases with the insulation thickness, whereas the energy use for space heating decreases with the insulation thickness. Thus, there exists an optimum thickness to get the lowest total energy consumption for each kind of insulation material. The ascending order of the total energy consumption of the three materials is mineral fiber, polyurethane, and vacuum insulation panel. However, the optimum insulation thicknesses for the three insulation materials show a verse order at a certain heat transfer coefficient of the base envelope. The energy payback time (EPT) is proposed to calculate the payback time of the primary energy use for insulation material production. Mineral fiber has the shortest time, followed by poly- urethane and vacuum insulation panel. The EPTS is 10, 19 and 21 years, respectively when the heat transfer coefficient of the base envelope is 0.2 W/(m2.K). In addition, the simulated results show that the theoretical value and the simulated value are basically identical. 展开更多
关键词 building envelope insulation materials energy consumption payback time
原文传递
Energy consumption prediction model of typical buildings in hot summer and cold winter zone of China 被引量:1
11
作者 Xu Jianqun Zhang Fang +2 位作者 Chen Feixiang Huang Xijun Sun Jian 《Journal of Southeast University(English Edition)》 EI CAS 2017年第3期348-354,共7页
To overcome the shortcomings of the energyconsumption prediction models in the application during thedesign stage, a quick prediction model for energy consumptionis proposed based on the decoupling method. Taking typi... To overcome the shortcomings of the energyconsumption prediction models in the application during thedesign stage, a quick prediction model for energy consumptionis proposed based on the decoupling method. Taking typicalresidential and office buildings in hot summer and cold winterzones as research objects, the influence factors on buildingenergy consumption are classified into intrinsic factors andoperational factors on the basis of the heat transfer principle.Then, using the intrinsic factors as the fundamental variablesand operational factors as the modified variables, the quickprediction model for the buildings in typical cold and hot zonesis proposed based on the decoupling method and the accuracyof the proposed model is verified. The results show thatcompared to the simulation results of EnergyPlus, the relativeerror of the prediction model is less than 1.5% ; comparedwith the real operating data of the building, the relative erroris 13.14% in 2011 and 8.56% in 2012 due to the fact that thecoincidence factor becomes larger than the design value about16% in 2011 and 13% in 2012. The finding reveals that theproposed model has the advantages of rapid calculationcompared with EnergyPlus and Design Builder when predictingbuilding energy consumption in building designs. The energyconsumption prediction model is of great practical value inoptimal operation and building designs. 展开更多
关键词 building energy consumption energy CONSERVATION LOAD PREDICTION energyPLUS
下载PDF
Energy Consumption Monitoring Analysis for Residential, Educational and Public Buildings 被引量:1
12
作者 Allan Hani Teet-Andrus Koiv 《Smart Grid and Renewable Energy》 2012年第3期231-238,共8页
In the present article thermal and electrical energy consumptions for different types of buildings are analyzed. The latitude and longitude of the researched area are defined 59?00'N and 26?00'E. According to ... In the present article thermal and electrical energy consumptions for different types of buildings are analyzed. The latitude and longitude of the researched area are defined 59?00'N and 26?00'E. According to K?ppen climate classification the area is located in warm summer continental climate. The study consist 40 residential, 7 educational and 44 public buildings. Three years data for each building type among 2006-2011 was used. Several detailed energy balances are presented for apartment buildings. In addition the different ways of domestic hot water preparation are analyzed for apartment buildings. The school buildings average consumption values are represented in study. Also valuable information of measured electrical energy consumption balance for a new office building is presented. Finally there is included the energy consumption analysis of public buildings. 展开更多
关键词 Specific energy consumption Thermal energy Electrical energy RESIDENTIAL buildingS EDUCATIONAL buildingS OFFICE buildingS
下载PDF
Energy consumption,indoor environmental quality,and benchmark for office buildings in Hainan Province of China 被引量:1
13
作者 孔祥飞 吕石磊 +1 位作者 辛亚娟 吴薇 《Journal of Central South University》 SCIE EI CAS 2012年第3期783-790,共8页
With rapid economy growth,building energy consumption in China has been gradually increased.The energy consumption and indoor environmental quality of 51 office buildings in Hainan Province,a hot and humid area,were s... With rapid economy growth,building energy consumption in China has been gradually increased.The energy consumption and indoor environmental quality of 51 office buildings in Hainan Province,a hot and humid area,were studied through collection of verified data in site visits and field tests.The result revealed that,electricity accounted for 99.79% of the total energy consumption,natural gas 0.17%,and diesel 0.04%.The air conditioning dominated the energy use with a share of 43.18%,equipment in the particular areas 26.90%,equipment in the office rooms 11.95%,lighting system 8.67%,general service system 7.57%,and miscellaneous items 1.73%.Statistical method including six indicators obtained the energy consumption benchmark with upper limit of 98.31 kW-h/m2 and lower limit of 55.26 kW-h/m2.According to ASHRAE standard(comfortable standard) and GB/T 18883-2002(acceptable standard),the indoor environmental quality of 51 sampled office buildings was classified into three ranks:good,normal and bad.With benchmark of building energy consumption combined with indoor environmental quality,it was found that only 3.92% of sampled buildings can be identified as the best performance buildings with low energy consumption and advanced indoor environmental quality,and the buildings classified into normal level accounted for the maximum ratio. 展开更多
关键词 室内环境质量 能源消耗 海南省 基准 办公大楼 中国 舒适标准 建筑能耗
下载PDF
Characteristics of Changes in Energy Consumption of Rural Residential Buildings from the Perspective of Province and Recommendations 被引量:1
14
作者 Chen WANG Jingyue ZHANG +2 位作者 Yaping GUO Hongbing ZHOU Cong CHEN 《Asian Agricultural Research》 2019年第11期40-42,47,共4页
In the context of the new period,the living standards and comfort demands of rural residents are increasing,which promotes the continuous growth of the total energy consumption of rural residential buildings.In this s... In the context of the new period,the living standards and comfort demands of rural residents are increasing,which promotes the continuous growth of the total energy consumption of rural residential buildings.In this study,it estimated the total energy consumption of rural residential buildings in 30 provinces(or cities)in China from 2004 to 2016.Through the division of climate regions of the residential buildings,this paper analyzed the characteristics of changes in the energy structure of residential buildings and the trend of energy consumption from the perspective of the province.Then based on the people s livelihood and from the perspective of development,it came up with some pertinent strategies and recommendations for energy saving and emission reduction in rural residential buildings. 展开更多
关键词 RURAL RESIDENTIAL buildingS energy structure energy consumption of buildingS Dynamic CHANGES
下载PDF
The Effects of Future Climate Change on Energy Consumption in Residential Buildings in China
15
作者 D. H. C. Chow M. Kelly J. Darkwa 《Journal of Power and Energy Engineering》 2013年第5期16-24,共9页
China is currently going through a phase of rapid mass urbanisation, and it is important to investigate how the growing built environment will cope with climate change, to see how the energy consumption of buildings i... China is currently going through a phase of rapid mass urbanisation, and it is important to investigate how the growing built environment will cope with climate change, to see how the energy consumption of buildings in China will be affected. This is especially important for the fast-growing cities in the north, and around the east and south coasts. This paper aims to study the effects of future climate change on the energy consumption of buildings in the three main climate regions of China, namely the “Cold” region in the north, which includes Beijing;the “Hot Summer Cold Winter” region in the east, which includes cities such as Shanghai and Ningbo;and the “Hot Summer Mild Winter” region in the south, which includes Guangzhou. Using data from the climate model, HadCM3, Test Reference Years are generated for the 2020s, 2050s and 2080s, for various IPCC future scenarios. These are then used to access the energy performance of typical existing buildings, and also the effects of retrofitting them to the standard of the current building codes. It was found that although there are reductions in energy consumption for heating and cooling with retrofitting existing residential buildings to the current standard, the actual effects are very small compared with the extra energy consumption that comes as a result of future climate change. This is especially true for Guangzhou, which currently have very little heating load, so there is little benefit of the reduction in heating demand from climate change. The effects of retrofitting in Beijing are also limited, and only in Ningbo was the effect of retrofitting able to nullify the effects of climate change up to 2020s. More improvements in building standards in all three regions are required to significantly reduce the effects of future climate change, especially to beyond 2020s. 展开更多
关键词 CLIMATE CHANGE energy consumption RESIDENTIAL buildingS Retrofitting Urbanisation
下载PDF
The Impacts of Building Regulations on the Thermal Performance and Energy Consumption of Residential Buildings in Riyadh City-Saudi Arabia
16
作者 Saleh Baharetha Elsayed Amer Mohammad Kotbi 《Open Journal of Energy Efficiency》 2021年第1期1-21,共21页
Riyadh city is the fastest growing city in Saudi Arabia. The rapid urban growth that happened recently in Riyadh was not based on the traditional urban planning principles, which have been established and applied for ... Riyadh city is the fastest growing city in Saudi Arabia. The rapid urban growth that happened recently in Riyadh was not based on the traditional urban planning principles, which have been established and applied for the city development process. The imported building regulations have created a new urban structures and street patterns. The contemporary urban form in Riyadh city is based mainly on traffic and economic consideration with the neglect of environmental dimensions. This research aims to examine the impacts of building regulations on the thermal performance of residential buildings in Riyadh city, with the ultimate goal of establishing planning guidelines that consider the environmental conditions of the city. The methodology adopted for achieving the aim of this study consists of two phases. First, the literature related to building regulations development in Riyadh, as of 2018, was reviewed. Second, buildings energy simulation was conducted to examine the thermal performance of the typical current status of residential building blocks in Riyadh city, and then several changes to building regulations were made to investigate their impacts on the thermal performance of buildings. The results showed that the impacts of Riyadh building regulations on the thermal performance of residential buildings differ across the evaluated cases. The ratio of building height to street width, urban block street orientation, and building orientation are the main factors affecting thermal performance of buildings within urban block. The study also concludes that adjusting the ratio of building height to the distance between buildings could have a significant impact in reducing cooling loads. This study will help policy makers, planners and designers to investigate the shortcoming in the current building regulations. 展开更多
关键词 building Regulations energy consumption Thermal Performance Residential buildings
下载PDF
Smart Building Design to Improve the Energy Consumption at an Office Room
17
作者 Saleh Babaa Abdul Aziz Al Rawahi +5 位作者 Angala Subramanian Abdullah Humaid Alshibli Shahid Khan Martin Khzouz Muneer Ahmed Ibrahim Ashrafi 《Smart Grid and Renewable Energy》 CAS 2022年第9期209-221,共13页
Buildings are becoming smarter as a result of a variety of advanced technologies that enable energy management, optimal space utilization, and smart surveillance for safety, among other things. Energy-efficient smart ... Buildings are becoming smarter as a result of a variety of advanced technologies that enable energy management, optimal space utilization, and smart surveillance for safety, among other things. Energy-efficient smart building ideas and execution are of great interest and top priority due to the building’s occupants’ misused and high-power consumption. This paper addresses the design and execution of an energy management system that includes a solar power system for generating power for the building’s needs and a PIR-based automation system for efficient power use. This project was carried out at the Military Technological College (MTC) in Muscat, in the system engineering department’s offices. This project seeks to generate power for the building’s energy needs using solar photovoltaic panels and reduce energy consumption within the office using a PIR-based automation system. The results demonstrate that after the breakeven point (the time it takes to recoup the initial investment), it can provide power to the building for another 17 years. The calculations and practical results presented in this study approve that the system is extremely helpful. 展开更多
关键词 Smart building DESIGN energy consumption Solar Power Passive Infra Red Sensor
下载PDF
Discussion on the Intelligent Design of Ultra-Low Energy Consumption Passive Buildings
18
作者 Xin Tong Xiaolin Yang Xiao Ma 《Frontiers Research of Architecture and Engineering》 2019年第2期20-24,共5页
With the continuous development of science and technology and the gradual improvement of modem building technology, people pay more and more attention to the introduction of advanced technology in architectural design... With the continuous development of science and technology and the gradual improvement of modem building technology, people pay more and more attention to the introduction of advanced technology in architectural design, such as the application of intelligent technology. With the increasingly severe environmental situation, people are increasingly demanding the environmental performance and green performance of buildings. The establishment of ultra-low energy consumption passive buildings has become one of the key construction contents of construction projects. This paper mainly analyzes the design points and architectural forms of related buildings from the perspective of intelligent control. 展开更多
关键词 Ultra-low energy consumption PASSIVE buildingS INTELLIGENT design
下载PDF
Design,fabrication and energy-saving evaluation of five-layer structure based transparent heat mirror coatings for windows application 被引量:1
19
作者 Xiaoqiang Hong Yue Yang +1 位作者 Huaying Chen Qi Tao 《Building Simulation》 SCIE EI CSCD 2023年第12期2333-2342,共10页
Transparent heat mirror which allows the transmission of visible sunlight while reflects the infrared thermal energy is an effective building energy efficiency technology for hot climatic regions.In this work,a five-l... Transparent heat mirror which allows the transmission of visible sunlight while reflects the infrared thermal energy is an effective building energy efficiency technology for hot climatic regions.In this work,a five-layer dielectric/metal/dielectric/metal/dielectric(DMDMD)coating of Si_(3)N_(4)/Ag/Si_(3)N_(4)/Ag/Si_(3)N_(4)structure is proposed.The radiative properties of the five-layer coatings are theoretically investigated by transfer matrix method.The thicknesses of the layers are optimized by using particle swarm optimization method.The sample of the designed Si_(3)N_(4)/Ag/Si_(3)N_(4)/Ag/Si_(3)N_(4)coating is prepared and the building energy performance when applying the DMDMD coating in a simple office room is also investigated,taking the hot weather condition of Guangzhou,China as an example.The simulated results show that the Tave+Rave value of the five-layer coating is 8%higher than that of the three-layer coating,and the long-wave emittance of the five-layer coating is 24.8%lower than that of the three-layer coating.And the application of the five-layer coatings on the glazed window could provide the highest energy saving rate of 8.9%when compared with the traditional low-e coatings. 展开更多
关键词 transparent heat mirror spectrally selective coating energy-efficient windows building energy efficiency
原文传递
A Data Analytics Study on Building Characteristics Impacting Energy Consumption in Single-Family Attached Homes
20
作者 Juan D. Gomez Afamia Elnakat +1 位作者 Marzieh Jafary Martha Wright 《Open Journal of Energy Efficiency》 2016年第4期121-134,共14页
San Antonio, Texas is the seventh largest city in the United States with a population of 1.4 million people, and ranked among the fastest growing cities. To assess the implications of past and present building practic... San Antonio, Texas is the seventh largest city in the United States with a population of 1.4 million people, and ranked among the fastest growing cities. To assess the implications of past and present building practices within the residential sector on future energy consumption, the energy utilization of single-family attached homes (SFAH) in Bexar County, Texas is studied. The available dataset includes 3932 SFAH records representing about 33% of the total number of SFAHs within the county. The study is based on pairing and analyzing data at the individual building level from a variety of sources including the buildings’ physical characteristics, access to fuels, and monthly energy consumption. The results indicate that the area of conditioned space, presence of swimming pools, number of stories, presence of fireplaces, fuel-type, and number of shared walls are a significant factor on the energy consumption of single-family attached homes. In terms of energy consumption, all-electric two-story homes sharing two walls are the most energy efficient among SFAHs. This study can aid comprehensive master planning efforts for developing sustainable communities by highlighting key features of SFAHs and making the case for higher density housing as a viable and more energy efficient alternative to single-family detached homes (SFDH). 展开更多
关键词 energy Efficiency Single-Family Attached Homes Residential energy consumption building Characteristics Reference buildings
下载PDF
上一页 1 2 171 下一页 到第
使用帮助 返回顶部