Building owners,designers and constructors are seeing a rapid increase in the number of sustainably designed high performance buildings.These buildings provide numerous benefits to the owners and occupants to include ...Building owners,designers and constructors are seeing a rapid increase in the number of sustainably designed high performance buildings.These buildings provide numerous benefits to the owners and occupants to include improved indoor air quality,energy efficiency,and environmental site standards;and ultimately enhance productivity for the building occupants.As the demand increases for higher building energy efficiency and environmental standards,application of a set of process models will support consistency and optimization during the design process.Systems engineering process models have proven effective in taking an integrated and comprehensive view of a system while allowing for clear stakeholder engagement,requirements definition,life cycle analysis,technology insertion,validation and verification.This paper overlays systems engineering on the sustainable design process by providing a framework for application of the Waterfall,Vee,and Spiral process models to high performance buildings.Each process model is mapped to the sustainable design process and is evaluated for its applicability to projects and building types.Adaptations of the models are provided as Green Building Process Models.展开更多
With the development and implementation of performance-based earthquake engineering,harmonization of performance levels between structural and nonstructural components becomes vital. Even if the structural components ...With the development and implementation of performance-based earthquake engineering,harmonization of performance levels between structural and nonstructural components becomes vital. Even if the structural components of a building achieve a continuous or immediate occupancy performance level after a seismic event,failure of architectural,mechanical or electrical components can lower the performance level of the entire building system. This reduction in performance caused by the vulnerability of nonstructural components has been observed during recent earthquakes worldwide. Moreover,nonstructural damage has limited the functionality of critical facilities,such as hospitals,following major seismic events. The investment in nonstructural components and building contents is far greater than that of structural components and framing. Therefore,it is not surprising that in many past earthquakes,losses from damage to nonstructural components have exceeded losses from structural damage. Furthermore,the failure of nonstructural components can become a safety hazard or can hamper the safe movement of occupants evacuating buildings,or of rescue workers entering buildings. In comparison to structural components and systems,there is relatively limited information on the seismic design of nonstructural components. Basic research work in this area has been sparse,and the available codes and guidelines are usually,for the most part,based on past experiences,engineering judgment and intuition,rather than on objective experimental and analytical results. Often,design engineers are forced to start almost from square one after each earthquake event: to observe what went wrong and to try to prevent repetitions. This is a consequence of the empirical nature of current seismic regulations and guidelines for nonstructural components. This review paper summarizes current knowledge on the seismic design and analysis of nonstructural building components,identifying major knowledge gaps that will need to be filled by future research. Furthermore,considering recent trends in earthquake engineering,the paper explores how performance-based seismic design might be conceived for nonstructural components,drawing on recent developments made in the field of seismic design and hinting at the specific considerations required for nonstructural components.展开更多
In recent years,China’s landscaping projects have developed vigorously,and the growth rate of urban garden green space areas has been maintained at about 5%.Overall,with the development of the national economy and th...In recent years,China’s landscaping projects have developed vigorously,and the growth rate of urban garden green space areas has been maintained at about 5%.Overall,with the development of the national economy and the support of macro policies,people’s demand for close to nature and beautify the environment is gradually increasing,which has brought new growth momentum for the development of the landscaping industry.Simultaneously,from the perspective of future economic development and urban development,the landscaping industry still has a lot of room for development.However,with the rapid development of landscape engineering,the problem of cost control of landscape engineering is becoming more prominent,the phenomenon of budget overestimation is common,and there are many factors affecting the cost of landscape engineering,which brings difficulties and challenges to the analysis of its influencing factors and cost management.How to scientifically analyze the influencing factors and control the cost has become an important link in the landscaping project.To solve the above problems,this paper takes the design stage of landscaping engineering as the background,takes the design estimate of landscaping engineering as the research object,through literature research and data collection,fully excavates the main influencing factors of the design estimate stage of landscaping engineering,analyzes the key points of cost control,and provides reference ideas and directions for the later cost management and control.展开更多
In this technical and educational research endeavor, a diverse group of civil engineering students took on the role of creating the means and methods of producing a successful building design. Architectural, structura...In this technical and educational research endeavor, a diverse group of civil engineering students took on the role of creating the means and methods of producing a successful building design. Architectural, structural, and environmental designs were primarily performed. This was followed by detailed cost analysis with the intent of providing a realistic cost comparison by pricing the intended building, using traditional material and typical building methods, versus pricing the building using recycled material and new present-day technology. Some green features needed to achieve a LEED (Leadership in Energy and Environmental Design) gold certification were considered and applied. It is shown that producing a green building is more costly in present circumstances;however, the additional cost due to greenification pays itself off throughout the years giving in return saving features. Even though the design of a green building comes with detailed planning and costly material, it does generate benefits for the building owner, the society, and most importantly the environment.展开更多
Performance-based design in earthquake engineering is a structural optimization problem that has, as the objective, the determination of design parameters for the minimization of total costs, while at the same time sa...Performance-based design in earthquake engineering is a structural optimization problem that has, as the objective, the determination of design parameters for the minimization of total costs, while at the same time satisfying minimum reliability levels for the specifi ed performance criteria. Total costs include those for construction and structural damage repairs, those associated with non-structural components and the social costs of economic losses, injuries and fatalities. This paper presents a general framework to approach this problem, using a numerical optimization strategy and incorporating the use of neural networks for the evaluation of dynamic responses and the reliability levels achieved for a given set of design parameters. The strategy is applied to an example of a three-story offi ce building. The results show the importance of considering the social costs, and the optimum failure probabilities when minimum reliability constraints are not taken into account.展开更多
With the advent of the fourth industrial revolution,the construction industry has undergone a paradigm shift.The smart construction technology market is expected to grow 12%annually in developed countries due to advan...With the advent of the fourth industrial revolution,the construction industry has undergone a paradigm shift.The smart construction technology market is expected to grow 12%annually in developed countries due to advanced technology investments.It is expected that businesses requiring highly sophisticated technology,for instance companies that need their old facilities upgraded,will become the main focus of the market.As building information modeling(BIM)design is becoming mandatory,such as in the Korea Public Procurement Service,researches regarding building automation,construction,and operation integration management systems based on BIM are conducted.In addition,for construction projects of over 10 billion won,design value engineering(Design VE)implementation,including life cycle cost(LCC)analysis,is mandatory at the design stage to improve quality and reduce the lifetime costs of buildings.In this study,we propose an improvement plan for LCC analysis at the design stage using the KBIMS library,which is an open BIM library developed by the Korean government and research groups.We analyze the existing LCC method,KBIMS library,and attribute information,and model the process that is applied in the LCC analysis system.This is expected to complement the LCC analysis system and improve work productivity.展开更多
Design For Cost (DFC) is a branch of Design For X (DFX). In this paper, wedefined DFC as a design method that analyzed and evaluated the product's life cycle cost (LCC), thenmodified the design to reduce the LCC. ...Design For Cost (DFC) is a branch of Design For X (DFX). In this paper, wedefined DFC as a design method that analyzed and evaluated the product's life cycle cost (LCC), thenmodified the design to reduce the LCC. Nowadays it is a very difficult thing to obtain LCC data inChina or in developing countries. Statistical methods can not be used because available LCC data arefew. In order to solve this problem, we used grey system theory. Then relations of cost factorswere analyzed in LCC using grey relevant methods, and a GM(1,1) model between design parameters andLCC was established. Using this model, we can estimate and control LCC by changing design parametersat the beginning of the design stage.展开更多
Adequacy of structural fire design in uncommon structures is conceptually ensured through cost-benefit analysis where the future costs are balanced against the benefits of safety investment.Cost-benefit analyses,howev...Adequacy of structural fire design in uncommon structures is conceptually ensured through cost-benefit analysis where the future costs are balanced against the benefits of safety investment.Cost-benefit analyses,however,are complicated and computationally challenging,and hence impractical for application to individual projects.To address this issue,design guidance proposes target reliability indices for normal design conditions,but no target reliability indices are defined for structural fire design.We revisit the background of the cost-optimization based approach underlying normal design target reliability indices then we extend this approach for the case of fire design of structures.We also propose a modified objective function for cost-optimization which simplifies the evaluation of target reliability indices and reduces the number of assumptions.The optimum safety level is expressed as a function of a new dimensionless variable named“Damage-to-investment indicator”(DII).The cost optimization approach is validated for the target reliability indices for normal design condition.The method is then applied for evaluating DII and the associated optimum reliability indices for fire-exposed structures.Two case studies are presented:(i)a one-way loaded reinforced concrete slab and(ii)a steel column under axial loading.This study thus provides a framework for deriving optimum(target)reliability index for structural fire design which can support the development of rational provisions in codes and standards.展开更多
High-rise intake towers in high-intensity seismic areas are prone to structural safety problems under vibration.Therefore,effective and low-cost anti-seismic engineering measures must be designed for protection.An int...High-rise intake towers in high-intensity seismic areas are prone to structural safety problems under vibration.Therefore,effective and low-cost anti-seismic engineering measures must be designed for protection.An intake tower in northwest China was considered the research object,and its natural vibration characteristics and dynamic response were first analyzed using the mode decomposition response spectrum method based on a three-dimensional finite element model.The non-dominated sorting genetic algorithm-II(NSGA-II)was adopted to optimize the anti-seismic scheme combination by comprehensively considering the dynamic tower response and variable project cost.Finally,the rationality of the original intake tower antiseismic design scheme was evaluated according to the obtained optimal solution set,and recommendations for improvement were proposed.The method adopted in this study may provide significant references for designing anti-seismic measures for high-rise structures such as intake towers located in high-intensity earthquake areas.展开更多
Product cost is one of the most important factors affecting product market share. Traditionally, product costs are estimated after they are manufactured. However, in this way, the best opportunity to control product c...Product cost is one of the most important factors affecting product market share. Traditionally, product costs are estimated after they are manufactured. However, in this way, the best opportunity to control product cost is lost. In this paper, a method trying to reduce product cost at the design stage is proposed. This method is called Design to Cost (DTC). According to this method, product structure can be optimized with the application of value engineering and Design for Manufacturing/Assembly (DFMA) criteria in the conceptual stage of product design. During embodiment design, products are evaluated economically on the basis of the product model which includes manufacturing, assembly and test cost information. According to the results, products are redesigned before manufacture, and the production cost is reduced.展开更多
Post-tensioning self-centering walls are a well-developed and resilient technology.However,despite extensive research,the application of this technology has previously been limited to low-rise buildings.A ten-story se...Post-tensioning self-centering walls are a well-developed and resilient technology.However,despite extensive research,the application of this technology has previously been limited to low-rise buildings.A ten-story selfcentering wall building has now been designed and constructed using the state-of-art design methodologies and construction detailing,as described in this paper.The building is designed in accordance with direct displacement-based design methodology,with modification of seismic demand due to relevant issues including higher-mode effects,second order effects,torsional effects,and flexural deformation of wall panels.Wall sections are designed with external energydissipating devices of steel dampers,and seismic performance of such designed self-centering walls is evaluated through numerical simulation.It is the first engineering project that uses self-centering walls in a high-rise building.The seismic design procedure of such a high-rise building,using self-centering wall structures,is comprehensively reviewed in this work,and additional proposals are put forward.Description of construction detailing,including slotted beams,flexible wall-to-floor connections,embedded beams,and damper installation,is provided.The demonstration project promotes the concept of seismic resilient structures and contributes to the most appealing city planning strategy of resilient cities at present.The paper could be a reference for industry engineers to promote the self-centering wall systems worldwide.展开更多
LCM (life cycle management) is a systematic approach, mindset and culture that considers economic, social, and environmental factors among other factors in the decision making process throughout various business or ...LCM (life cycle management) is a systematic approach, mindset and culture that considers economic, social, and environmental factors among other factors in the decision making process throughout various business or organizational decisions that affect both inputs and outputs of a product or service life cycle. It is a product, process, or activity management system aimed at minimizing environmental and socio-economic burdens associated with an organization's product or process during its entire life cycle and value chain. LCM's application is gaining wider acceptance both in the corporate and governmental organizations as an approach to reduce ecological footprints and to improve the sustainability of human activities. But where and how can it be used in agricultural engineering applications? This study highlights the potential areas of LCM application in agricultural and allied sectors and how it can be utilized. The study revealed that LCM tools such as design for environment and life cycle analysis can be used to evaluate the environmental impacts of-and to improve the products, equipment, and structures produced by biosystems engineers as well as the processes used to generate them.展开更多
In the process of China’s national economic development,the construction industry is a very important component and has a direct impact on the level of China’s economic construction.Nowadays,the development speed of...In the process of China’s national economic development,the construction industry is a very important component and has a direct impact on the level of China’s economic construction.Nowadays,the development speed of the prefabricated construction industry is constantly accelerating.To effectively ensure the economic benefits of engineering projects,it is necessary to comprehensively strengthen cost budgeting and cost control.This article analyzes the cost budget of prefabricated construction projects,introduces the application advantages of prefabricated construction,and proposes specific cost budgeting and cost control measures,hoping to provide some reference for relevant researchers.展开更多
Virtual simulation teaching of architecture courses is a teaching mode based on the deep integration of information technology and design class in intelligent environment.Under the background of new engineering,relyin...Virtual simulation teaching of architecture courses is a teaching mode based on the deep integration of information technology and design class in intelligent environment.Under the background of new engineering,relying on a national virtual simulation laboratory,the exploration of green low-carbon simulation in architecture courses is of great importance for improving the dimension of scientific thinking of architecture undergraduates.In this study,based on the background of architecture curriculum construction,the practical content of the teaching reform of architecture courses based on virtual simulation was expounded from three dimensions of reshaping teaching objectives,updating teaching content and improving teaching evaluation.The practical paths of teaching reform of architecture courses were put forward under virtual simulation experiment teaching,namely building teaching teams,strengthening pilot courses,reforming teaching methods,optimizing classroom teaching content and evaluation methods,constructing practical classroom teaching form in line with the learning situation of architecture courses,building a smart learning platform,and closely combining resource construction,application and curriculum content.This study has important practical significance for optimizing and improving the teaching system of professional courses,adapting to the needs of the industry,enhancing competitiveness,and promoting the construction of first-class architecture courses.展开更多
文摘Building owners,designers and constructors are seeing a rapid increase in the number of sustainably designed high performance buildings.These buildings provide numerous benefits to the owners and occupants to include improved indoor air quality,energy efficiency,and environmental site standards;and ultimately enhance productivity for the building occupants.As the demand increases for higher building energy efficiency and environmental standards,application of a set of process models will support consistency and optimization during the design process.Systems engineering process models have proven effective in taking an integrated and comprehensive view of a system while allowing for clear stakeholder engagement,requirements definition,life cycle analysis,technology insertion,validation and verification.This paper overlays systems engineering on the sustainable design process by providing a framework for application of the Waterfall,Vee,and Spiral process models to high performance buildings.Each process model is mapped to the sustainable design process and is evaluated for its applicability to projects and building types.Adaptations of the models are provided as Green Building Process Models.
文摘With the development and implementation of performance-based earthquake engineering,harmonization of performance levels between structural and nonstructural components becomes vital. Even if the structural components of a building achieve a continuous or immediate occupancy performance level after a seismic event,failure of architectural,mechanical or electrical components can lower the performance level of the entire building system. This reduction in performance caused by the vulnerability of nonstructural components has been observed during recent earthquakes worldwide. Moreover,nonstructural damage has limited the functionality of critical facilities,such as hospitals,following major seismic events. The investment in nonstructural components and building contents is far greater than that of structural components and framing. Therefore,it is not surprising that in many past earthquakes,losses from damage to nonstructural components have exceeded losses from structural damage. Furthermore,the failure of nonstructural components can become a safety hazard or can hamper the safe movement of occupants evacuating buildings,or of rescue workers entering buildings. In comparison to structural components and systems,there is relatively limited information on the seismic design of nonstructural components. Basic research work in this area has been sparse,and the available codes and guidelines are usually,for the most part,based on past experiences,engineering judgment and intuition,rather than on objective experimental and analytical results. Often,design engineers are forced to start almost from square one after each earthquake event: to observe what went wrong and to try to prevent repetitions. This is a consequence of the empirical nature of current seismic regulations and guidelines for nonstructural components. This review paper summarizes current knowledge on the seismic design and analysis of nonstructural building components,identifying major knowledge gaps that will need to be filled by future research. Furthermore,considering recent trends in earthquake engineering,the paper explores how performance-based seismic design might be conceived for nonstructural components,drawing on recent developments made in the field of seismic design and hinting at the specific considerations required for nonstructural components.
文摘In recent years,China’s landscaping projects have developed vigorously,and the growth rate of urban garden green space areas has been maintained at about 5%.Overall,with the development of the national economy and the support of macro policies,people’s demand for close to nature and beautify the environment is gradually increasing,which has brought new growth momentum for the development of the landscaping industry.Simultaneously,from the perspective of future economic development and urban development,the landscaping industry still has a lot of room for development.However,with the rapid development of landscape engineering,the problem of cost control of landscape engineering is becoming more prominent,the phenomenon of budget overestimation is common,and there are many factors affecting the cost of landscape engineering,which brings difficulties and challenges to the analysis of its influencing factors and cost management.How to scientifically analyze the influencing factors and control the cost has become an important link in the landscaping project.To solve the above problems,this paper takes the design stage of landscaping engineering as the background,takes the design estimate of landscaping engineering as the research object,through literature research and data collection,fully excavates the main influencing factors of the design estimate stage of landscaping engineering,analyzes the key points of cost control,and provides reference ideas and directions for the later cost management and control.
文摘In this technical and educational research endeavor, a diverse group of civil engineering students took on the role of creating the means and methods of producing a successful building design. Architectural, structural, and environmental designs were primarily performed. This was followed by detailed cost analysis with the intent of providing a realistic cost comparison by pricing the intended building, using traditional material and typical building methods, versus pricing the building using recycled material and new present-day technology. Some green features needed to achieve a LEED (Leadership in Energy and Environmental Design) gold certification were considered and applied. It is shown that producing a green building is more costly in present circumstances;however, the additional cost due to greenification pays itself off throughout the years giving in return saving features. Even though the design of a green building comes with detailed planning and costly material, it does generate benefits for the building owner, the society, and most importantly the environment.
文摘Performance-based design in earthquake engineering is a structural optimization problem that has, as the objective, the determination of design parameters for the minimization of total costs, while at the same time satisfying minimum reliability levels for the specifi ed performance criteria. Total costs include those for construction and structural damage repairs, those associated with non-structural components and the social costs of economic losses, injuries and fatalities. This paper presents a general framework to approach this problem, using a numerical optimization strategy and incorporating the use of neural networks for the evaluation of dynamic responses and the reliability levels achieved for a given set of design parameters. The strategy is applied to an example of a three-story offi ce building. The results show the importance of considering the social costs, and the optimum failure probabilities when minimum reliability constraints are not taken into account.
文摘With the advent of the fourth industrial revolution,the construction industry has undergone a paradigm shift.The smart construction technology market is expected to grow 12%annually in developed countries due to advanced technology investments.It is expected that businesses requiring highly sophisticated technology,for instance companies that need their old facilities upgraded,will become the main focus of the market.As building information modeling(BIM)design is becoming mandatory,such as in the Korea Public Procurement Service,researches regarding building automation,construction,and operation integration management systems based on BIM are conducted.In addition,for construction projects of over 10 billion won,design value engineering(Design VE)implementation,including life cycle cost(LCC)analysis,is mandatory at the design stage to improve quality and reduce the lifetime costs of buildings.In this study,we propose an improvement plan for LCC analysis at the design stage using the KBIMS library,which is an open BIM library developed by the Korean government and research groups.We analyze the existing LCC method,KBIMS library,and attribute information,and model the process that is applied in the LCC analysis system.This is expected to complement the LCC analysis system and improve work productivity.
文摘Design For Cost (DFC) is a branch of Design For X (DFX). In this paper, wedefined DFC as a design method that analyzed and evaluated the product's life cycle cost (LCC), thenmodified the design to reduce the LCC. Nowadays it is a very difficult thing to obtain LCC data inChina or in developing countries. Statistical methods can not be used because available LCC data arefew. In order to solve this problem, we used grey system theory. Then relations of cost factorswere analyzed in LCC using grey relevant methods, and a GM(1,1) model between design parameters andLCC was established. Using this model, we can estimate and control LCC by changing design parametersat the beginning of the design stage.
基金funded by the Ghent University Special Research Fund under grant 01N01219“Multi-objective societal optimization of structural fire safety investments for uncommon projects using advanced regression techniques”.
文摘Adequacy of structural fire design in uncommon structures is conceptually ensured through cost-benefit analysis where the future costs are balanced against the benefits of safety investment.Cost-benefit analyses,however,are complicated and computationally challenging,and hence impractical for application to individual projects.To address this issue,design guidance proposes target reliability indices for normal design conditions,but no target reliability indices are defined for structural fire design.We revisit the background of the cost-optimization based approach underlying normal design target reliability indices then we extend this approach for the case of fire design of structures.We also propose a modified objective function for cost-optimization which simplifies the evaluation of target reliability indices and reduces the number of assumptions.The optimum safety level is expressed as a function of a new dimensionless variable named“Damage-to-investment indicator”(DII).The cost optimization approach is validated for the target reliability indices for normal design condition.The method is then applied for evaluating DII and the associated optimum reliability indices for fire-exposed structures.Two case studies are presented:(i)a one-way loaded reinforced concrete slab and(ii)a steel column under axial loading.This study thus provides a framework for deriving optimum(target)reliability index for structural fire design which can support the development of rational provisions in codes and standards.
基金supported by the National Natural Science Foundation of the China/Yalong River Joint Fund Project (No.U1765205).
文摘High-rise intake towers in high-intensity seismic areas are prone to structural safety problems under vibration.Therefore,effective and low-cost anti-seismic engineering measures must be designed for protection.An intake tower in northwest China was considered the research object,and its natural vibration characteristics and dynamic response were first analyzed using the mode decomposition response spectrum method based on a three-dimensional finite element model.The non-dominated sorting genetic algorithm-II(NSGA-II)was adopted to optimize the anti-seismic scheme combination by comprehensively considering the dynamic tower response and variable project cost.Finally,the rationality of the original intake tower antiseismic design scheme was evaluated according to the obtained optimal solution set,and recommendations for improvement were proposed.The method adopted in this study may provide significant references for designing anti-seismic measures for high-rise structures such as intake towers located in high-intensity earthquake areas.
文摘Product cost is one of the most important factors affecting product market share. Traditionally, product costs are estimated after they are manufactured. However, in this way, the best opportunity to control product cost is lost. In this paper, a method trying to reduce product cost at the design stage is proposed. This method is called Design to Cost (DTC). According to this method, product structure can be optimized with the application of value engineering and Design for Manufacturing/Assembly (DFMA) criteria in the conceptual stage of product design. During embodiment design, products are evaluated economically on the basis of the product model which includes manufacturing, assembly and test cost information. According to the results, products are redesigned before manufacture, and the production cost is reduced.
基金the Distinguished Young Scientists Fund of National Natural Science Foundation of China(Grant No.52025083)the technical support of Shanghai CITI-RAISE Construction Group.
文摘Post-tensioning self-centering walls are a well-developed and resilient technology.However,despite extensive research,the application of this technology has previously been limited to low-rise buildings.A ten-story selfcentering wall building has now been designed and constructed using the state-of-art design methodologies and construction detailing,as described in this paper.The building is designed in accordance with direct displacement-based design methodology,with modification of seismic demand due to relevant issues including higher-mode effects,second order effects,torsional effects,and flexural deformation of wall panels.Wall sections are designed with external energydissipating devices of steel dampers,and seismic performance of such designed self-centering walls is evaluated through numerical simulation.It is the first engineering project that uses self-centering walls in a high-rise building.The seismic design procedure of such a high-rise building,using self-centering wall structures,is comprehensively reviewed in this work,and additional proposals are put forward.Description of construction detailing,including slotted beams,flexible wall-to-floor connections,embedded beams,and damper installation,is provided.The demonstration project promotes the concept of seismic resilient structures and contributes to the most appealing city planning strategy of resilient cities at present.The paper could be a reference for industry engineers to promote the self-centering wall systems worldwide.
文摘LCM (life cycle management) is a systematic approach, mindset and culture that considers economic, social, and environmental factors among other factors in the decision making process throughout various business or organizational decisions that affect both inputs and outputs of a product or service life cycle. It is a product, process, or activity management system aimed at minimizing environmental and socio-economic burdens associated with an organization's product or process during its entire life cycle and value chain. LCM's application is gaining wider acceptance both in the corporate and governmental organizations as an approach to reduce ecological footprints and to improve the sustainability of human activities. But where and how can it be used in agricultural engineering applications? This study highlights the potential areas of LCM application in agricultural and allied sectors and how it can be utilized. The study revealed that LCM tools such as design for environment and life cycle analysis can be used to evaluate the environmental impacts of-and to improve the products, equipment, and structures produced by biosystems engineers as well as the processes used to generate them.
文摘In the process of China’s national economic development,the construction industry is a very important component and has a direct impact on the level of China’s economic construction.Nowadays,the development speed of the prefabricated construction industry is constantly accelerating.To effectively ensure the economic benefits of engineering projects,it is necessary to comprehensively strengthen cost budgeting and cost control.This article analyzes the cost budget of prefabricated construction projects,introduces the application advantages of prefabricated construction,and proposes specific cost budgeting and cost control measures,hoping to provide some reference for relevant researchers.
基金the Second Batch of Enterprise-university Cooperative Education Project of the Ministry of Education in 2022(220603608281219)Teacher Education Reform and Teacher Development Research Project of Shaanxi Province in 2023(SJS2023YB040)+3 种基金New Liberal Arts Research and Reform Practice Project of Xi’an University of Science and TechnologyHumanities and Social Science Project of Ministry of Education of China(23YJCZH194)Social Science Foundation of Shaanxi Province,China(2022J052)Natural Science Foundation for Young Scholars of Shaanxi Province,China(2024JC-YBQN-0493).
文摘Virtual simulation teaching of architecture courses is a teaching mode based on the deep integration of information technology and design class in intelligent environment.Under the background of new engineering,relying on a national virtual simulation laboratory,the exploration of green low-carbon simulation in architecture courses is of great importance for improving the dimension of scientific thinking of architecture undergraduates.In this study,based on the background of architecture curriculum construction,the practical content of the teaching reform of architecture courses based on virtual simulation was expounded from three dimensions of reshaping teaching objectives,updating teaching content and improving teaching evaluation.The practical paths of teaching reform of architecture courses were put forward under virtual simulation experiment teaching,namely building teaching teams,strengthening pilot courses,reforming teaching methods,optimizing classroom teaching content and evaluation methods,constructing practical classroom teaching form in line with the learning situation of architecture courses,building a smart learning platform,and closely combining resource construction,application and curriculum content.This study has important practical significance for optimizing and improving the teaching system of professional courses,adapting to the needs of the industry,enhancing competitiveness,and promoting the construction of first-class architecture courses.