The whole-process project cost management based on building information modeling(BIM)is a new management method,aiming to realize the comprehensive optimization and improvement of project cost management through the a...The whole-process project cost management based on building information modeling(BIM)is a new management method,aiming to realize the comprehensive optimization and improvement of project cost management through the application of BIM technology.This paper summarizes and analyzes the whole-process project cost management based on BIM,aiming to explore its application and development prospects in the construction industry.Firstly,this paper introduces the role and advantages of BIM technology in engineering cost management,including information integration,data sharing,and collaborative work.Secondly,the paper analyzes the key technologies and methods of the whole-process project cost management based on BIM,including model construction,data management,and cost control.In addition,the paper also discusses the challenges and limitations of the whole-process BIM project cost management,such as the inconsistency of technical standards,personnel training,and consciousness change.Finally,the paper summarizes the advantages and development prospects of the whole-process project cost management based on BIM and puts forward the direction and suggestions for future research.Through the research of this paper,it can provide a reference for construction cost management and promote innovation and development in the construction industry.展开更多
Life Cycle Cost Analysis (LCCA) provides a systematic approach to assess the total cost associated with owning, operating, and maintaining assets throughout their entire life. BIM empowers architects and designers to ...Life Cycle Cost Analysis (LCCA) provides a systematic approach to assess the total cost associated with owning, operating, and maintaining assets throughout their entire life. BIM empowers architects and designers to perform real-time evaluations to explore various design options. However, when integrated with LCCA, BIM provides a comprehensive economic perspective that helps stakeholders understand the long-term financial implications of design decisions. This study presents a methodology for developing a model that seamlessly integrates BIM and LCCA during the conceptual design stage of buildings. This integration allows for a comprehensive evaluation and analysis of the design process, ensuring that the development aligns with the principles of low carbon emissions by employing modular construction, 3D concrete printing methods, and different building design alternatives. The model considers the initial construction costs in addition to all the long-term operational, maintenance, and salvage values. It combines various tools and data through different modules, including energy analysis, Life Cycle Assessment (LCA), and Life Cycle Cost Analysis (LCCA) to execute a comprehensive assessment of the financial implications of a specific design option throughout the lifecycle of building projects. The development of the said model and its implementation involves the creation of a new plug-in for the BIM tool (i.e., Autodesk Revit) to enhance its functionalities and capabilities in forecasting the life-cycle costs of buildings in addition to generating associated cash flows, creating scenarios, and sensitivity analyses in an automatic manner. This model empowers designers to evaluate and justify their initial investments while designing and selecting potential construction methods for buildings, and enabling stakeholders to make informed decisions by assessing different design alternatives based on long-term financial considerations during the early stages of design.展开更多
A typical building project has a long life in the maintenance stage. Also, the cost at this stage is enormously huge compared to planning, design and construction phases. In the earlier stage, which is planning or des...A typical building project has a long life in the maintenance stage. Also, the cost at this stage is enormously huge compared to planning, design and construction phases. In the earlier stage, which is planning or design phase, however, many project participants put little emphasis on the maintenance information. As a result, important maintenance data is missing and erroneously feedback to the 3D/BIM model. This research provides a generic process model for maintenance information management for building facilities. The authors have identified that there exist most-frequently used information areas: checking information, material information, equipment information, supplier information, and maintenance history information. Each information area should be embedded in the BIM model in order to effectively feedback to the operation and maintenance stage in the project. Thus, the study has proposed a novel data format structure which can effectively link the 3D/BIM object with the maintenance data. The demonstration project shows how the data format structure is used. The contribution of this study is to provide guidance to a project practitioner by step-by-step approach in dealing with the significant maintenance information in the earlier stage of the construction project.展开更多
Building envelope is a fence that controls heat exchange between interior and exterior and plays an essential role in providing thermal comfort conditions of residents. In recent years, due to the necessity of conserv...Building envelope is a fence that controls heat exchange between interior and exterior and plays an essential role in providing thermal comfort conditions of residents. In recent years, due to the necessity of conserving energy and also preventing increased environmental pollution, the importance of sustainable construction has been doubled. Checking the problems of thermal behavior of the building envelope materials, and what influences in the heating and cooling loads exerted and energy consumption of buildings, are the questions that this research seeks to answer. In this regard, building information modelling analysis (BIM) has worthy contribution in the completion process of sustainable design;thus using software Design Builder, it is paid attention to simulation of the thermal behavior of two types of defined materials for the building envelope that was designed as a Research Institute of Renewable Energy of Yazd University. For Type 1 materials, two layers of brick have been selected, and for Type 2 a thermal insulation layer also added it. Results of the analysis showed that the use of materials Type 2 in the cooling load %4.8 and in the thermal load %62.5 reduction can be achieved which means reducing the load on active system and thus reducing the initial cost of building. Also reduction in annual energy consumption by almost %2.4 for cooling and %62.9 for heating buildings have been achieved, which makes saving non-renewable energy consumption, and consequently reducing environmental pollution as well as reducing current costs will be established.展开更多
Building Information Modelling (BIM) is a technology and a process that has brought changes in the construction’s traditional procurement system. Kenya lacks contractual guidelines on implementation of BIM;this makes...Building Information Modelling (BIM) is a technology and a process that has brought changes in the construction’s traditional procurement system. Kenya lacks contractual guidelines on implementation of BIM;this makes the adoption of BIM slow and difficult. Previous research has identified a gap in contractual relationships, roles and resulting risks. The objectives of this study were to investigate BIM adoption in Nairobi and to investigate the influence of BIM on Engineering Contract Management (ECM)</span><span style="font-family:Verdana;"> in Nairobi Kenya</span><span style="font-family:Verdana;">. The survey research was a descriptive study with 175 responsive questionnaires. Respondents comprised of Civil Engineers, Construction Project Managers, Architects, Quantity Surveyors, Contractors and Facility Managers. Data was collected through self-administered questionnaire and in-depth interview. Descriptive analytics, correlation and Exploratory factor analysis methods were used to analyse quantitative data. Qualitative data was analysed thematically. It emerged that adoption level was at 56.6% and shallow understanding of BIM capabilities remains to be a barrier to its adoption and implementation. It also emerged that BIM improves ECM;when time, cost, quality, collaboration and return on investment improve, ECM becomes easier. Latent factors found in BIM and ECM relationship were Legal Implications, awareness and knowledge, efficiency, versatility, mandate and leadership, and competitiveness. Further, the study found out that BIM influence on ECM demands for establishment of standards, guidelines, policy, legal framework, and regulations, which can be achieved by amending the public procurement act which dictates the operation of all the other standard forms of contract. Further research should be conducted to measure whether the understanding of BIM had positively improved.展开更多
A projection of the Canadian population shows that in 2024 one in five Canadians will be over 65 years old. This shift forces designers to consider the entire lifetime of occupants during the design of new buildings. ...A projection of the Canadian population shows that in 2024 one in five Canadians will be over 65 years old. This shift forces designers to consider the entire lifetime of occupants during the design of new buildings. Universal Design (UD), which is a design that accommodates all people to the greatest extent possible and aging in place design that is deeply rooted in the principles of UD, aim to house people irrespective of their age, ability, and chronic health conditions. Building Information Modeling (BIM) significantly helps advance the development of the Architecture, Engineering, and Construction (AEC) industry in a more collaborative and automated way. Integrating BIM and UD allows designers to incorporate UD standards easily and efficiently at the conceptual design stage of buildings by using the functionalities and capabilities of BIM tools. Therefore, this study presents the development of an automated computer model to facilitate the adoption of UD standards and processes. The novelty highlighted in this model resides in the creation of an automated method that employs a newly created plug-in and databases to assist designers to incorporate UD standards at the conceptual stage in a timely and cost-effective manner. Furthermore, the study introduces the methodology consisting of collecting, categorizing, and storing data from various universal design and accessible design guidelines in the developed databases and developing new plug-ins in BIM tool to link the developed databases in order to automate the process of retrieving necessary information and components to help designers and owners select optimal design alternatives based on their predefined criteria.展开更多
The building sector is the largest consumer of energy in industrial countries. Saving energy in new buildings or building renovations can thus lead to significant global environmental impacts. In this endeavor, buildi...The building sector is the largest consumer of energy in industrial countries. Saving energy in new buildings or building renovations can thus lead to significant global environmental impacts. In this endeavor, building information <span>modeling (BIM) and building energy modeling (BEM) are two important to</span>ols to make the transition to net-zero energy buildings (NZEB). So far, little attention has been devoted, in the literature, to discuss the connection between BIM, BEM, and Life-cycle assessment (LCA), which is the main topic of this article. A literature review of 157 journal articles and conference proceedings published between 1990 and 2020 is presented. This review outlines knowledge gaps concerning BIM, BEM, and environmental impact assessment. It suggests that defining the process with the right technology (at the right time) would result in a more integrated design process (IDP) and bridge current gaps. The most efficient way to improve process and technology is related to the competences of the architects, engineers and constructors (AEC). The review also indicates that the IDP in the early design phases (EDP) is in need of improvement for architects and engineers, where a better connection between design phases, specific levels of development (LOD) and BIM tools is needed. <span>Competences, process and technology are the three main themes addressed in the review. Their relation to design phases and LOD is discussed. The aim </span>is to propose possible solutions to the current hinders in BIM-to-BEM (BIM2BEM) and BIM-for-LCA (BIM4LCA) integration.展开更多
INTRODUCTION Although visual programming is being broadly implemented in other disciplines,it has only relatively recently become an important supplement to three-dimensional modeling programs in the architecture,engi...INTRODUCTION Although visual programming is being broadly implemented in other disciplines,it has only relatively recently become an important supplement to three-dimensional modeling programs in the architecture,engineering,and construction industry.Currently,Grasshopper in conjunction with Rhino is a leading example of a visual programming environment that is strongly supported by a user community that is developing additional functionality,but Grasshopper does not yet work directly with building information modeling(BIM)software.Dynamo is relatively new,but shows considerable promise in becoming a constructive tool to complement BIM,3D modeling,and analysis programs because it includes parametric geom-etries and works with Revit,a leading BIM software program.Three case studies are described:extensibility of Dynamo through the use of a building energy simu-lation package,controlling a virtual model’s response through light level sensors,and interactively updating shading components for a building facade based on solar angles.They demonstrate that one can work directly within building information models(BIM)using a visual programming language through updating component parameters.These case studies demonstrate the feasibility of a workflow for sustain-able design simulations that is different than that more commonly used--having a separation between design and analysis models and using a neutral file format exchange such as IFC or gbXML to transfer data.As visual programming languages are still a bit uncommon in the building industry,a short background is provided to place them within the tool set of other customizable tools that designers have been developing.展开更多
Global concerns toward environmental issues have induced growing demand for new approaches in the construction because of its considerable impact on the environment and use of natural resources. Through using construc...Global concerns toward environmental issues have induced growing demand for new approaches in the construction because of its considerable impact on the environment and use of natural resources. Through using construction sustainability tools, methods and techniques, a greener design can be applied during various building phases. In this connection, it is argued that the analytical and integrated models applied by Building Information Modelling (BIM) may also facilitate this process to be performed more efficiently. BIM and construction sustainability are quite different initiatives, but both have received much attention in recent years in the architecture, engineering and construction (AEC) industry. A rigorous analysis of the interactions between them implies that a synergy exists which, if properly it is understood that can be helpful to reduce the environmental impacts of the AEC industry. A BIM-based design model can contribute to sustainability through its three main dimensions which are environmental, economic and social. In this paper, by reviewing the existing literature on BIM and construction sustainability and using a matrix to analyze construction sustainability dimensions and BIM functionalities a number of interactions have been discussed. It can be concluded that despite there are many improvements in implementation of BIM in environmental and economic aspects of sustainability, its potential impact on social dimension has not been explicitly explored hence further studies need to be undertaken in this area.展开更多
Green buildings should respect nature and endeavor to mitigate harmful effects to the environment and occupants.This is often interpreted as creating sustain-able sites,consuming less energy and water,reusing material...Green buildings should respect nature and endeavor to mitigate harmful effects to the environment and occupants.This is often interpreted as creating sustain-able sites,consuming less energy and water,reusing materials,and providing excel-lent indoor environmental quality.Environmentally friendly buildings should also consider literally the impact that they have on birds,millions of them.A major factor in bird collisions with buildings is the choice of building materials.These choices are usually made by the architect who may not be aware of the issue or may be looking for guidance from certification programs such as LEED.As a proof of concept for an educational tool,we developed a software-assisted approach to characterize whether a proposed building design would earn a point for the LEED Pilot Credit 55:Avoiding Bird Collisions.Using the visual programming language Dynamo with the common building information modeling software Revit,we automated the assessment of designs.The approach depends on parameters that incorporate assessments of bird threat for façade materials,analyzes building geom-etry relative to materials,and processes user input on building operation to produce the assessment.展开更多
This study unfolds an innovative approach aiming to address the critical role of building design in global energy consumption, focusing on optimizing the Window-to-Wall Ratio (WWR), since buildings account for approxi...This study unfolds an innovative approach aiming to address the critical role of building design in global energy consumption, focusing on optimizing the Window-to-Wall Ratio (WWR), since buildings account for approximately 30% of total energy consumed worldwide. The greatest contributors to energy expenditure in buildings are internal artificial lighting and heating and cooling systems. The WWR, determined by the proportion of the building’s glazed area to its wall area, is a significant factor influencing energy efficiency and minimizing energy load. This study introduces the development of a semi-automated computer model designed to offer a real-time, interactive simulation environment, fostering improving communication and engagement between designers and owners. The said model serves to optimize both the WWR and building orientation to align with occupants’ needs and expectations, subsequently reducing annual energy consumption and enhancing the overall building energy performance. The integrated model incorporates Building Information Modeling (BIM), Virtual Reality (VR), and Energy Analysis tools deployed at the conceptual design stage, allowing for the amalgamation of owners’ inputs in the design process and facilitating the creation of more realistic and effective design strategies.展开更多
Building Information Model(BIM)Technology can be widely used in various construction fields.The construction quality and project cost of the prefabricated construction industry based on BIM can be effectively controll...Building Information Model(BIM)Technology can be widely used in various construction fields.The construction quality and project cost of the prefabricated construction industry based on BIM can be effectively controlled.Based on BIM Technology,the integration of bill of quantities can effectively control the cost of prefabricated construction and improve competitiveness in the bidding process.Based on this,the characteristics and advantages of bill of quantities pricing based on BIM were expounded in this paper.Besides,the structure and content construction of bill of quantities were analyzed,followed by an analysis of pricing control strategy based on BIM were analyzed for assembly building quantities for reference.展开更多
Building information modeling(BIM) and project management are two major research topics that accommodate large volumes of research efforts. BIM has been interpreted as a process technology that aids in enhancing proje...Building information modeling(BIM) and project management are two major research topics that accommodate large volumes of research efforts. BIM has been interpreted as a process technology that aids in enhancing project management. Hence, the investigation from an interdisciplinary perspective of the two concepts may bring new insights to understanding related research.In this paper, a structural approach is adopted in reviewing BIM studies in project management from 2005 to 2017 within identified target journals. This review aims to classify the major research directions and topics for BIM research in project management. Moreover, given BIM's potential for application in project management, this paper attempts to establish a fundamental research foundation for a new paradigm of project management that incorporates BIM, namely, BIM-based project management. The preliminary result suggests that BIM research in project management develops drastically in the examined duration. The research directions of BIM studies in project management include enabling BIM as a technology in project management; BIM application as a solution for specific project management scopes; integration issues of BIM that have been brought to project management;institutional environment and regulatory governance of BIM in realizing project management strategies; and analysis of effects and strategies of BIM adoption and implementation in projects. The directions and trends are then analyzed to develop a research route for BIM studies in project management. Finally, conclusions focus on the relations of the research directions, as well as the contributions and theoretical implications of this review.Future research areas are also recommended.展开更多
文摘The whole-process project cost management based on building information modeling(BIM)is a new management method,aiming to realize the comprehensive optimization and improvement of project cost management through the application of BIM technology.This paper summarizes and analyzes the whole-process project cost management based on BIM,aiming to explore its application and development prospects in the construction industry.Firstly,this paper introduces the role and advantages of BIM technology in engineering cost management,including information integration,data sharing,and collaborative work.Secondly,the paper analyzes the key technologies and methods of the whole-process project cost management based on BIM,including model construction,data management,and cost control.In addition,the paper also discusses the challenges and limitations of the whole-process BIM project cost management,such as the inconsistency of technical standards,personnel training,and consciousness change.Finally,the paper summarizes the advantages and development prospects of the whole-process project cost management based on BIM and puts forward the direction and suggestions for future research.Through the research of this paper,it can provide a reference for construction cost management and promote innovation and development in the construction industry.
文摘Life Cycle Cost Analysis (LCCA) provides a systematic approach to assess the total cost associated with owning, operating, and maintaining assets throughout their entire life. BIM empowers architects and designers to perform real-time evaluations to explore various design options. However, when integrated with LCCA, BIM provides a comprehensive economic perspective that helps stakeholders understand the long-term financial implications of design decisions. This study presents a methodology for developing a model that seamlessly integrates BIM and LCCA during the conceptual design stage of buildings. This integration allows for a comprehensive evaluation and analysis of the design process, ensuring that the development aligns with the principles of low carbon emissions by employing modular construction, 3D concrete printing methods, and different building design alternatives. The model considers the initial construction costs in addition to all the long-term operational, maintenance, and salvage values. It combines various tools and data through different modules, including energy analysis, Life Cycle Assessment (LCA), and Life Cycle Cost Analysis (LCCA) to execute a comprehensive assessment of the financial implications of a specific design option throughout the lifecycle of building projects. The development of the said model and its implementation involves the creation of a new plug-in for the BIM tool (i.e., Autodesk Revit) to enhance its functionalities and capabilities in forecasting the life-cycle costs of buildings in addition to generating associated cash flows, creating scenarios, and sensitivity analyses in an automatic manner. This model empowers designers to evaluate and justify their initial investments while designing and selecting potential construction methods for buildings, and enabling stakeholders to make informed decisions by assessing different design alternatives based on long-term financial considerations during the early stages of design.
文摘A typical building project has a long life in the maintenance stage. Also, the cost at this stage is enormously huge compared to planning, design and construction phases. In the earlier stage, which is planning or design phase, however, many project participants put little emphasis on the maintenance information. As a result, important maintenance data is missing and erroneously feedback to the 3D/BIM model. This research provides a generic process model for maintenance information management for building facilities. The authors have identified that there exist most-frequently used information areas: checking information, material information, equipment information, supplier information, and maintenance history information. Each information area should be embedded in the BIM model in order to effectively feedback to the operation and maintenance stage in the project. Thus, the study has proposed a novel data format structure which can effectively link the 3D/BIM object with the maintenance data. The demonstration project shows how the data format structure is used. The contribution of this study is to provide guidance to a project practitioner by step-by-step approach in dealing with the significant maintenance information in the earlier stage of the construction project.
文摘Building envelope is a fence that controls heat exchange between interior and exterior and plays an essential role in providing thermal comfort conditions of residents. In recent years, due to the necessity of conserving energy and also preventing increased environmental pollution, the importance of sustainable construction has been doubled. Checking the problems of thermal behavior of the building envelope materials, and what influences in the heating and cooling loads exerted and energy consumption of buildings, are the questions that this research seeks to answer. In this regard, building information modelling analysis (BIM) has worthy contribution in the completion process of sustainable design;thus using software Design Builder, it is paid attention to simulation of the thermal behavior of two types of defined materials for the building envelope that was designed as a Research Institute of Renewable Energy of Yazd University. For Type 1 materials, two layers of brick have been selected, and for Type 2 a thermal insulation layer also added it. Results of the analysis showed that the use of materials Type 2 in the cooling load %4.8 and in the thermal load %62.5 reduction can be achieved which means reducing the load on active system and thus reducing the initial cost of building. Also reduction in annual energy consumption by almost %2.4 for cooling and %62.9 for heating buildings have been achieved, which makes saving non-renewable energy consumption, and consequently reducing environmental pollution as well as reducing current costs will be established.
文摘Building Information Modelling (BIM) is a technology and a process that has brought changes in the construction’s traditional procurement system. Kenya lacks contractual guidelines on implementation of BIM;this makes the adoption of BIM slow and difficult. Previous research has identified a gap in contractual relationships, roles and resulting risks. The objectives of this study were to investigate BIM adoption in Nairobi and to investigate the influence of BIM on Engineering Contract Management (ECM)</span><span style="font-family:Verdana;"> in Nairobi Kenya</span><span style="font-family:Verdana;">. The survey research was a descriptive study with 175 responsive questionnaires. Respondents comprised of Civil Engineers, Construction Project Managers, Architects, Quantity Surveyors, Contractors and Facility Managers. Data was collected through self-administered questionnaire and in-depth interview. Descriptive analytics, correlation and Exploratory factor analysis methods were used to analyse quantitative data. Qualitative data was analysed thematically. It emerged that adoption level was at 56.6% and shallow understanding of BIM capabilities remains to be a barrier to its adoption and implementation. It also emerged that BIM improves ECM;when time, cost, quality, collaboration and return on investment improve, ECM becomes easier. Latent factors found in BIM and ECM relationship were Legal Implications, awareness and knowledge, efficiency, versatility, mandate and leadership, and competitiveness. Further, the study found out that BIM influence on ECM demands for establishment of standards, guidelines, policy, legal framework, and regulations, which can be achieved by amending the public procurement act which dictates the operation of all the other standard forms of contract. Further research should be conducted to measure whether the understanding of BIM had positively improved.
文摘A projection of the Canadian population shows that in 2024 one in five Canadians will be over 65 years old. This shift forces designers to consider the entire lifetime of occupants during the design of new buildings. Universal Design (UD), which is a design that accommodates all people to the greatest extent possible and aging in place design that is deeply rooted in the principles of UD, aim to house people irrespective of their age, ability, and chronic health conditions. Building Information Modeling (BIM) significantly helps advance the development of the Architecture, Engineering, and Construction (AEC) industry in a more collaborative and automated way. Integrating BIM and UD allows designers to incorporate UD standards easily and efficiently at the conceptual design stage of buildings by using the functionalities and capabilities of BIM tools. Therefore, this study presents the development of an automated computer model to facilitate the adoption of UD standards and processes. The novelty highlighted in this model resides in the creation of an automated method that employs a newly created plug-in and databases to assist designers to incorporate UD standards at the conceptual stage in a timely and cost-effective manner. Furthermore, the study introduces the methodology consisting of collecting, categorizing, and storing data from various universal design and accessible design guidelines in the developed databases and developing new plug-ins in BIM tool to link the developed databases in order to automate the process of retrieving necessary information and components to help designers and owners select optimal design alternatives based on their predefined criteria.
文摘The building sector is the largest consumer of energy in industrial countries. Saving energy in new buildings or building renovations can thus lead to significant global environmental impacts. In this endeavor, building information <span>modeling (BIM) and building energy modeling (BEM) are two important to</span>ols to make the transition to net-zero energy buildings (NZEB). So far, little attention has been devoted, in the literature, to discuss the connection between BIM, BEM, and Life-cycle assessment (LCA), which is the main topic of this article. A literature review of 157 journal articles and conference proceedings published between 1990 and 2020 is presented. This review outlines knowledge gaps concerning BIM, BEM, and environmental impact assessment. It suggests that defining the process with the right technology (at the right time) would result in a more integrated design process (IDP) and bridge current gaps. The most efficient way to improve process and technology is related to the competences of the architects, engineers and constructors (AEC). The review also indicates that the IDP in the early design phases (EDP) is in need of improvement for architects and engineers, where a better connection between design phases, specific levels of development (LOD) and BIM tools is needed. <span>Competences, process and technology are the three main themes addressed in the review. Their relation to design phases and LOD is discussed. The aim </span>is to propose possible solutions to the current hinders in BIM-to-BEM (BIM2BEM) and BIM-for-LCA (BIM4LCA) integration.
文摘INTRODUCTION Although visual programming is being broadly implemented in other disciplines,it has only relatively recently become an important supplement to three-dimensional modeling programs in the architecture,engineering,and construction industry.Currently,Grasshopper in conjunction with Rhino is a leading example of a visual programming environment that is strongly supported by a user community that is developing additional functionality,but Grasshopper does not yet work directly with building information modeling(BIM)software.Dynamo is relatively new,but shows considerable promise in becoming a constructive tool to complement BIM,3D modeling,and analysis programs because it includes parametric geom-etries and works with Revit,a leading BIM software program.Three case studies are described:extensibility of Dynamo through the use of a building energy simu-lation package,controlling a virtual model’s response through light level sensors,and interactively updating shading components for a building facade based on solar angles.They demonstrate that one can work directly within building information models(BIM)using a visual programming language through updating component parameters.These case studies demonstrate the feasibility of a workflow for sustain-able design simulations that is different than that more commonly used--having a separation between design and analysis models and using a neutral file format exchange such as IFC or gbXML to transfer data.As visual programming languages are still a bit uncommon in the building industry,a short background is provided to place them within the tool set of other customizable tools that designers have been developing.
文摘Global concerns toward environmental issues have induced growing demand for new approaches in the construction because of its considerable impact on the environment and use of natural resources. Through using construction sustainability tools, methods and techniques, a greener design can be applied during various building phases. In this connection, it is argued that the analytical and integrated models applied by Building Information Modelling (BIM) may also facilitate this process to be performed more efficiently. BIM and construction sustainability are quite different initiatives, but both have received much attention in recent years in the architecture, engineering and construction (AEC) industry. A rigorous analysis of the interactions between them implies that a synergy exists which, if properly it is understood that can be helpful to reduce the environmental impacts of the AEC industry. A BIM-based design model can contribute to sustainability through its three main dimensions which are environmental, economic and social. In this paper, by reviewing the existing literature on BIM and construction sustainability and using a matrix to analyze construction sustainability dimensions and BIM functionalities a number of interactions have been discussed. It can be concluded that despite there are many improvements in implementation of BIM in environmental and economic aspects of sustainability, its potential impact on social dimension has not been explicitly explored hence further studies need to be undertaken in this area.
文摘Green buildings should respect nature and endeavor to mitigate harmful effects to the environment and occupants.This is often interpreted as creating sustain-able sites,consuming less energy and water,reusing materials,and providing excel-lent indoor environmental quality.Environmentally friendly buildings should also consider literally the impact that they have on birds,millions of them.A major factor in bird collisions with buildings is the choice of building materials.These choices are usually made by the architect who may not be aware of the issue or may be looking for guidance from certification programs such as LEED.As a proof of concept for an educational tool,we developed a software-assisted approach to characterize whether a proposed building design would earn a point for the LEED Pilot Credit 55:Avoiding Bird Collisions.Using the visual programming language Dynamo with the common building information modeling software Revit,we automated the assessment of designs.The approach depends on parameters that incorporate assessments of bird threat for façade materials,analyzes building geom-etry relative to materials,and processes user input on building operation to produce the assessment.
文摘This study unfolds an innovative approach aiming to address the critical role of building design in global energy consumption, focusing on optimizing the Window-to-Wall Ratio (WWR), since buildings account for approximately 30% of total energy consumed worldwide. The greatest contributors to energy expenditure in buildings are internal artificial lighting and heating and cooling systems. The WWR, determined by the proportion of the building’s glazed area to its wall area, is a significant factor influencing energy efficiency and minimizing energy load. This study introduces the development of a semi-automated computer model designed to offer a real-time, interactive simulation environment, fostering improving communication and engagement between designers and owners. The said model serves to optimize both the WWR and building orientation to align with occupants’ needs and expectations, subsequently reducing annual energy consumption and enhancing the overall building energy performance. The integrated model incorporates Building Information Modeling (BIM), Virtual Reality (VR), and Energy Analysis tools deployed at the conceptual design stage, allowing for the amalgamation of owners’ inputs in the design process and facilitating the creation of more realistic and effective design strategies.
基金School level scientific research project of Chongqing Institute of Engineering.Project No.:2020xskz01.
文摘Building Information Model(BIM)Technology can be widely used in various construction fields.The construction quality and project cost of the prefabricated construction industry based on BIM can be effectively controlled.Based on BIM Technology,the integration of bill of quantities can effectively control the cost of prefabricated construction and improve competitiveness in the bidding process.Based on this,the characteristics and advantages of bill of quantities pricing based on BIM were expounded in this paper.Besides,the structure and content construction of bill of quantities were analyzed,followed by an analysis of pricing control strategy based on BIM were analyzed for assembly building quantities for reference.
基金conducted under the framework of a joint Ph.D. program of the IDMR of Sichuan University and The Hong Kong Polytechnic University, which was funded by the Hong Kong Jockey Club
文摘Building information modeling(BIM) and project management are two major research topics that accommodate large volumes of research efforts. BIM has been interpreted as a process technology that aids in enhancing project management. Hence, the investigation from an interdisciplinary perspective of the two concepts may bring new insights to understanding related research.In this paper, a structural approach is adopted in reviewing BIM studies in project management from 2005 to 2017 within identified target journals. This review aims to classify the major research directions and topics for BIM research in project management. Moreover, given BIM's potential for application in project management, this paper attempts to establish a fundamental research foundation for a new paradigm of project management that incorporates BIM, namely, BIM-based project management. The preliminary result suggests that BIM research in project management develops drastically in the examined duration. The research directions of BIM studies in project management include enabling BIM as a technology in project management; BIM application as a solution for specific project management scopes; integration issues of BIM that have been brought to project management;institutional environment and regulatory governance of BIM in realizing project management strategies; and analysis of effects and strategies of BIM adoption and implementation in projects. The directions and trends are then analyzed to develop a research route for BIM studies in project management. Finally, conclusions focus on the relations of the research directions, as well as the contributions and theoretical implications of this review.Future research areas are also recommended.