The paper studies the ground vertical deformation and the geoid undulation caused by loading of neighboring buildings, based on the loading tides theory. The influence on elevation is also considered. The results show...The paper studies the ground vertical deformation and the geoid undulation caused by loading of neighboring buildings, based on the loading tides theory. The influence on elevation is also considered. The results show that the ground vertical deformation and the geoid undulation both reach millimeter magnitude. Therefore, it is obvious that the building loading significantly affects the precise engineering surveying, and it must be seriously considered in application.展开更多
As in many parts of the world, long-term excessive extraction of groundwater has caused significant land-surface sub- sidence in the residential areas of Datun coal mining district in East China. The recorded maximum ...As in many parts of the world, long-term excessive extraction of groundwater has caused significant land-surface sub- sidence in the residential areas of Datun coal mining district in East China. The recorded maximum level of subsidence in the area since 1976 to 2006 is 863 mm, and the area with an accumulative subsidence more than 200 mm has reached 33.1 km2 by the end of 2006. Over ten cases of building crack due to ground subsidence have already been observed. Spatial variation in ground subsi- dence often leads to a corresponding pattern of ground deformation. Buildings and underground infrastructures have been under a higher risk of damage in locations with greater differential ground deformation. Governmental guideline in China classifies build- ing damages into four different levels, based on the observable measures such as the width of wall crack, the degree of door and window deformation, the degree of wall inclination and the degree of structural destruction. Building damage level (BDL) is esti- mated by means of ground deformation analysis in terms of variations in slope gradient and curvature. Ground deformation analysis in terms of variations in slope gradient has shown that the areas of BDL III and BDL II sites account for about 0.013 km2 and 0.284 km2 respectively in 2006, and the predicted areas of BDL (define this first) III and II sites will be about 0.029 km2 and 0.423 km2 respectively by 2010. The situation is getting worse as subsidence continues. That calls for effective strategies for subsidence miti- gation and damage reduction, in terms of sustainable groundwater extraction, enhanced monitoring and the establishment of early warning systems.展开更多
To investigate the causes qf cracks in multistory masonry buildings, the effect of vertical load difference on cracking behaviors was investigated experimentally by testing and measuring the displacements at the testi...To investigate the causes qf cracks in multistory masonry buildings, the effect of vertical load difference on cracking behaviors was investigated experimentally by testing and measuring the displacements at the testing points of a large sized real masonry U-shaped model. Additionally, the cracking behaviors in U-shaped model were analyzed with shear stress and numerical simulated with ANSYS software. The experimental results show that the deformation increases with the increase of the vertical load. The vertical load results in different deformation between the bearing wall and non-bearing wall, which leads to cracking on the non-beating wall. The rapid deformation happens at 160 kN and cracks occur firstly at the top section of non-bearing wall near to the bearing wall. New cracks are observed and the previous cracks are enlarged and developed with the increase of vertical load. The maximum crack opening reaches 12 mm, and the non-bearing wall is about to collapse when the vertical load arrives at 380 kN. Theoretical analysis indicates that the shear stress reaches the maximum value at the top section of the non-bearing wall, and thus cracks tend to happen at the top section of the non-bearing wall. Numerical simulation results about the cracking behaviors are in good agreement with experiments results.展开更多
It is important to explore efficient algorithms for the identification of both structural parameters and unmeasured earthquake ground motion.Recently,the authors proposed an algorithm for the identification of shear-t...It is important to explore efficient algorithms for the identification of both structural parameters and unmeasured earthquake ground motion.Recently,the authors proposed an algorithm for the identification of shear-type buildings and unknown earthquake excitation.In this paper,it is extended to the investigation of the identification of flexible buildings with bending deformation and the unmeasured earthquake ground motion.In the absolute co-ordinate system,the unmeasured ground motion can be treated as an unknown translational force and a bending moment at the 1st floor level of a flexible building.Structural unknown parameters above the 1st story of the building can be identified by the extended Kalman estimator and the 1st story stiffness and the unmeasured ground motion are subsequently estimated based on the least-squares estimation.The proposed algorithm is further extended to the identification of tall bending-type buildings based on substructure approach.Inter-connection effect between sub-buildings is treated as‘additional unknown inputs’to sub-buildings,which are estimated by the extended Kalman estimator without the measurements of rotational responses.Numerical examples demonstrate the identification of a multi-story,tall bending-type building and its unmeasured earthquake ground motions using only partial measurements of structural absolute responses.展开更多
珊瑚礁不同地貌带有着不同的工程地质特征和力学特性。为探究珊瑚礁地基的工程力学特性及其发育规律,在西沙永兴岛不同地貌单元开展了浅层平板载荷试验、深层螺旋板载荷试验、压实度测试以及回弹模量试验,获取了珊瑚礁不同地貌的地基承...珊瑚礁不同地貌带有着不同的工程地质特征和力学特性。为探究珊瑚礁地基的工程力学特性及其发育规律,在西沙永兴岛不同地貌单元开展了浅层平板载荷试验、深层螺旋板载荷试验、压实度测试以及回弹模量试验,获取了珊瑚礁不同地貌的地基承载力、变形模量、回弹模量等工程力学参数。试验结果表明:人工填筑的钙质土地基承载力和变形模量明显高于天然形成的礁坪相地基和沙坝地基,其承载力特征值可达320~360 k Pa,变形模量在95~200 MPa之间,且地基的沉降量很小,满足一般低层建筑物对地基承载力和变形的要求;在荷载作用下,钙质土地基的沉降是瞬时完成的,载荷试验可采用快速加载法;在地下水位以上地基承载力随着深度增大逐渐增加,但在地下水位以下承载力和变形模量明显减小。钙质土地基压实度在87%以上时回弹模量达到472~730 MPa,且回弹模量随着压实度的增大而增大。展开更多
文摘The paper studies the ground vertical deformation and the geoid undulation caused by loading of neighboring buildings, based on the loading tides theory. The influence on elevation is also considered. The results show that the ground vertical deformation and the geoid undulation both reach millimeter magnitude. Therefore, it is obvious that the building loading significantly affects the precise engineering surveying, and it must be seriously considered in application.
文摘As in many parts of the world, long-term excessive extraction of groundwater has caused significant land-surface sub- sidence in the residential areas of Datun coal mining district in East China. The recorded maximum level of subsidence in the area since 1976 to 2006 is 863 mm, and the area with an accumulative subsidence more than 200 mm has reached 33.1 km2 by the end of 2006. Over ten cases of building crack due to ground subsidence have already been observed. Spatial variation in ground subsi- dence often leads to a corresponding pattern of ground deformation. Buildings and underground infrastructures have been under a higher risk of damage in locations with greater differential ground deformation. Governmental guideline in China classifies build- ing damages into four different levels, based on the observable measures such as the width of wall crack, the degree of door and window deformation, the degree of wall inclination and the degree of structural destruction. Building damage level (BDL) is esti- mated by means of ground deformation analysis in terms of variations in slope gradient and curvature. Ground deformation analysis in terms of variations in slope gradient has shown that the areas of BDL III and BDL II sites account for about 0.013 km2 and 0.284 km2 respectively in 2006, and the predicted areas of BDL (define this first) III and II sites will be about 0.029 km2 and 0.423 km2 respectively by 2010. The situation is getting worse as subsidence continues. That calls for effective strategies for subsidence miti- gation and damage reduction, in terms of sustainable groundwater extraction, enhanced monitoring and the establishment of early warning systems.
基金Project(50778067) supported by the National Natural Science Foundation of China
文摘To investigate the causes qf cracks in multistory masonry buildings, the effect of vertical load difference on cracking behaviors was investigated experimentally by testing and measuring the displacements at the testing points of a large sized real masonry U-shaped model. Additionally, the cracking behaviors in U-shaped model were analyzed with shear stress and numerical simulated with ANSYS software. The experimental results show that the deformation increases with the increase of the vertical load. The vertical load results in different deformation between the bearing wall and non-bearing wall, which leads to cracking on the non-beating wall. The rapid deformation happens at 160 kN and cracks occur firstly at the top section of non-bearing wall near to the bearing wall. New cracks are observed and the previous cracks are enlarged and developed with the increase of vertical load. The maximum crack opening reaches 12 mm, and the non-bearing wall is about to collapse when the vertical load arrives at 380 kN. Theoretical analysis indicates that the shear stress reaches the maximum value at the top section of the non-bearing wall, and thus cracks tend to happen at the top section of the non-bearing wall. Numerical simulation results about the cracking behaviors are in good agreement with experiments results.
基金supported by the National Natural Science Foundation of China(Grant No.51178406)the State Key Laboratory for Disaster Reduction in Civil Engineering at Tongji University(Grant No.SLDRCE10-MB-01)
文摘It is important to explore efficient algorithms for the identification of both structural parameters and unmeasured earthquake ground motion.Recently,the authors proposed an algorithm for the identification of shear-type buildings and unknown earthquake excitation.In this paper,it is extended to the investigation of the identification of flexible buildings with bending deformation and the unmeasured earthquake ground motion.In the absolute co-ordinate system,the unmeasured ground motion can be treated as an unknown translational force and a bending moment at the 1st floor level of a flexible building.Structural unknown parameters above the 1st story of the building can be identified by the extended Kalman estimator and the 1st story stiffness and the unmeasured ground motion are subsequently estimated based on the least-squares estimation.The proposed algorithm is further extended to the identification of tall bending-type buildings based on substructure approach.Inter-connection effect between sub-buildings is treated as‘additional unknown inputs’to sub-buildings,which are estimated by the extended Kalman estimator without the measurements of rotational responses.Numerical examples demonstrate the identification of a multi-story,tall bending-type building and its unmeasured earthquake ground motions using only partial measurements of structural absolute responses.
文摘珊瑚礁不同地貌带有着不同的工程地质特征和力学特性。为探究珊瑚礁地基的工程力学特性及其发育规律,在西沙永兴岛不同地貌单元开展了浅层平板载荷试验、深层螺旋板载荷试验、压实度测试以及回弹模量试验,获取了珊瑚礁不同地貌的地基承载力、变形模量、回弹模量等工程力学参数。试验结果表明:人工填筑的钙质土地基承载力和变形模量明显高于天然形成的礁坪相地基和沙坝地基,其承载力特征值可达320~360 k Pa,变形模量在95~200 MPa之间,且地基的沉降量很小,满足一般低层建筑物对地基承载力和变形的要求;在荷载作用下,钙质土地基的沉降是瞬时完成的,载荷试验可采用快速加载法;在地下水位以上地基承载力随着深度增大逐渐增加,但在地下水位以下承载力和变形模量明显减小。钙质土地基压实度在87%以上时回弹模量达到472~730 MPa,且回弹模量随着压实度的增大而增大。